tflearn tensorflow LSTM predict sin function


from __future__ import division, print_function, absolute_import

import tflearn
import numpy as np
import math
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import tensorflow as tf

step_radians = 0.001
steps_of_history = 10
steps_in_future = 5
learning_rate = 0.003

def getData(x):
    seq = []
    next_val = []
    for i in range(0, len(x) - steps_of_history - steps_in_future, steps_in_future):
        seq.append(x[i: i + steps_of_history])
        next_val.append(x[i + steps_of_history + steps_in_future -1])
    
    seq = np.reshape(seq, [-1, steps_of_history, 1])
    next_val = np.reshape(next_val, [-1, 1])
    X = np.array(seq)
    Y = np.array(next_val)
    return X,Y

def myRNN(activator,optimizer):
    tf.reset_default_graph()
    # Network building
    net = tflearn.input_data(shape=[None, steps_of_history, 1])
    net = tflearn.lstm(net, 32, dropout=0.8,bias=True)
    net = tflearn.fully_connected(net, 1, activation=activator)
    net = tflearn.regression(net, optimizer=optimizer, loss='mean_square', learning_rate=learning_rate)
    
    # Training Data
    trainVal = np.sin(np.arange(0, 20*math.pi, step_radians))
    trainX,trainY = getData(trainVal)
    print(np.shape(trainX))
    
    # Training
    model = tflearn.DNN(net)
    model.fit(trainX, trainY, n_epoch=10, validation_set=0.1, batch_size=128)
    
    # Testing Data
    testVal = np.sin(np.arange(20*math.pi, 24*math.pi, step_radians))
    testX,testY = getData(testVal)
    
    # Predict the future values
    predictY = model.predict(testX)
    
    print("---------TEST ERROR-----------")
    expected = np.array(testY).flatten()
    predicted = np.array(predictY).flatten()
    error = sum(((expected - predicted) **2)/len(expected))
    print(error)
    
    # Plot and save figure
    plotFig(testY, np.array(predictY).flatten(), error, activator+"_"+optimizer)

def plotFig(actual,predicted,error,filename):
    # Plot the results
    plt.figure(figsize=(20,4))
    plt.suptitle('Prediction')
    plt.title('History = '+str(steps_of_history)+', Future = '+str(steps_in_future)+', Error= '+str(error*100)+'%')
    plt.plot(actual, 'r-', label='Expected')
    plt.plot(predicted, 'g.', label='Predicted')
    plt.legend()
    plt.savefig(filename+'.png')
    
def main():
    activators = ['linear', 'tanh', 'sigmoid', 'softmax', 'softplus', 'softsign', 'relu', 'relu6', 'leaky_relu', 'prelu', 'elu']
    optimizers = ['sgd', 'rmsprop', 'adam', 'momentum', 'adagrad', 'ftrl', 'adadelta']
    for activator in activators:    
        for optimizer in optimizers:
            print ("Running for : "+ activator + " & " + optimizer)
            myRNN(activator, optimizer)
            break
        break

main()

 效果:

 

备注:steps_in_future = 5 仅仅是采样数据用,每5个点采集一次数据,用于训练,后续绘图也是。修改为1,就没有采样过程了!steps_of_history = 10 使用历史的10个数据点来预测。实验表明,数据点越多,模型预测效果越好。为1的时候,效果比10的时候差些。

其他参考代码:

# Simple example using recurrent neural network to predict time series values

from __future__ import division, print_function, absolute_import

import tflearn
from tflearn.layers.normalization import batch_normalization
import numpy as np
import math
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt

step_radians = 0.01
steps_of_history = 200
steps_in_future = 1
index = 0

x = np.sin(np.arange(0, 20*math.pi, step_radians))

seq = []
next_val = []

for i in range(0, len(x) - steps_of_history, steps_in_future):
    seq.append(x[i: i + steps_of_history])
    next_val.append(x[i + steps_of_history])

seq = np.reshape(seq, [-1, steps_of_history, 1])
next_val = np.reshape(next_val, [-1, 1])
print(np.shape(seq))

trainX = np.array(seq)
trainY = np.array(next_val)

# Network building
net = tflearn.input_data(shape=[None, steps_of_history, 1])
net = tflearn.simple_rnn(net, n_units=32, return_seq=False)
net = tflearn.fully_connected(net, 1, activation='linear')
net = tflearn.regression(net, optimizer='sgd', loss='mean_square', learning_rate=0.1)

# Training
model = tflearn.DNN(net, clip_gradients=0.0, tensorboard_verbose=0)
model.fit(trainX, trainY, n_epoch=15, validation_set=0.1, batch_size=128)

# Testing
x = np.sin(np.arange(20*math.pi, 24*math.pi, step_radians))

seq = []

for i in range(0, len(x) - steps_of_history, steps_in_future):
    seq.append(x[i: i + steps_of_history])

seq = np.reshape(seq, [-1, steps_of_history, 1])
testX = np.array(seq)

# Predict the future values
predictY = model.predict(testX)
print(predictY)

# Plot the results
plt.figure(figsize=(20,4))
plt.suptitle('Prediction')
plt.title('History='+str(steps_of_history)+', Future='+str(steps_in_future))
plt.plot(x, 'r-', label='Actual')
plt.plot(predictY, 'gx', label='Predicted')
plt.legend()
plt.savefig('sine.png')

 效果:

 

参考:

https://github.com/tflearn/tflearn/issues/121

https://mourafiq.com/2016/05/15/predicting-sequences-using-rnn-in-tensorflow.html

https://blog.csdn.net/weiwei9363/article/details/78904383

 

摘录tensorflow处理的做法:

RNN - 预测正弦函数

import tensorflow as tf import numpy as np import matplotlib.pyplot as plt %matplotlib inline

数据准备

# 训练数据个数 training_examples = 10000 # 测试数据个数 testing_examples = 1000 # sin函数的采样间隔 sample_gap = 0.01 # 每个训练样本的长度 timesteps = 20
def generate_data(seq): ''' 生成数据,seq是一序列的连续的sin的值 ''' X = [] y = [] # 用前 timesteps 个sin值,估计第 timesteps+1 个 # 因此, 输入 X 是一段序列,输出 y 是一个值 for i in range(len(seq) - timesteps -1): X.append(seq[i : i+timesteps]) y.append(seq[i+timesteps]) return np.array(X, dtype=np.float32), np.array(y, dtype=np.float32) 
test_start = training_examples*sample_gap
test_end = test_start + testing_examples*sample_gap

train_x, train_y = generate_data( np.sin( np.linspace(0, test_start, training_examples) ) ) test_x, test_y = generate_data( np.sin( np.linspace(test_start, test_end, testing_examples) ) )

建立RNN模型

设置模型参数

lstm_size = 30 lstm_layers = 2 batch_size = 64

定义输入输出

x = tf.placeholder(tf.float32, [None, timesteps, 1], name='input_x') y_ = tf.placeholder(tf.float32, [None, 1], name='input_y') keep_prob = tf.placeholder(tf.float32, name='keep_prob')

建立LSTM层

# 有lstm_size个单元 lstm = tf.contrib.rnn.BasicLSTMCell(lstm_size) # 添加dropout drop = tf.contrib.rnn.DropoutWrapper(lstm, output_keep_prob=keep_prob) # 一层不够,就多来几层 def lstm_cell(): return tf.contrib.rnn.BasicLSTMCell(lstm_size) cell = tf.contrib.rnn.MultiRNNCell([ lstm_cell() for _ in range(lstm_layers)]) # 进行forward,得到隐层的输出 outputs, final_state = tf.nn.dynamic_rnn(cell, x, dtype=tf.float32) # 在本问题中只关注最后一个时刻的输出结果,该结果为下一个时刻的预测值 outputs = outputs[:,-1] # 定义输出层, 输出值[-1,1],因此激活函数用tanh predictions = tf.contrib.layers.fully_connected(outputs, 1, activation_fn=tf.tanh) # 定义损失函数 cost = tf.losses.mean_squared_error(y_, predictions) # 定义优化步骤 optimizer = tf.train.AdamOptimizer().minimize(cost)

训练

# 获取一个batch_size大小的数据 def get_batches(X, y, batch_size=64): for i in range(0, len(X), batch_size): begin_i = i end_i = i + batch_size if (i+batch_size) < len(X) else len(X) yield X[begin_i:end_i], y[begin_i:end_i]
epochs = 20 session = tf.Session() with session.as_default() as sess: # 初始化变量 tf.global_variables_initializer().run() iteration = 1 for e in range(epochs): for xs, ys in get_batches(train_x, train_y, batch_size): # xs[:,:,None] 增加一个维度,例如[64, 20] ==> [64, 20, 1],为了对应输入 # 同理 ys[:,None] feed_dict = { x:xs[:,:,None], y_:ys[:,None], keep_prob:.5 } loss, _ = sess.run([cost, optimizer], feed_dict=feed_dict) if iteration % 100 == 0: print('Epochs:{}/{}'.format(e, epochs), 'Iteration:{}'.format(iteration), 'Train loss: {:.8f}'.format(loss)) iteration += 1
Epochs:0/20 Iteration:100 Train loss: 0.01009926
Epochs:1/20 Iteration:200 Train loss: 0.02012673
Epochs:1/20 Iteration:300 Train loss: 0.00237983
Epochs:2/20 Iteration:400 Train loss: 0.00029798
Epochs:3/20 Iteration:500 Train loss: 0.00283409
Epochs:3/20 Iteration:600 Train loss: 0.00115144
Epochs:4/20 Iteration:700 Train loss: 0.00130756
Epochs:5/20 Iteration:800 Train loss: 0.00029282
Epochs:5/20 Iteration:900 Train loss: 0.00045034
Epochs:6/20 Iteration:1000 Train loss: 0.00007531
Epochs:7/20 Iteration:1100 Train loss: 0.00189699
Epochs:7/20 Iteration:1200 Train loss: 0.00022669
Epochs:8/20 Iteration:1300 Train loss: 0.00065262
Epochs:8/20 Iteration:1400 Train loss: 0.00001342
Epochs:9/20 Iteration:1500 Train loss: 0.00037799
Epochs:10/20 Iteration:1600 Train loss: 0.00009412
Epochs:10/20 Iteration:1700 Train loss: 0.00110568
Epochs:11/20 Iteration:1800 Train loss: 0.00024895
Epochs:12/20 Iteration:1900 Train loss: 0.00287319
Epochs:12/20 Iteration:2000 Train loss: 0.00012025
Epochs:13/20 Iteration:2100 Train loss: 0.00353661
Epochs:14/20 Iteration:2200 Train loss: 0.00045697
Epochs:14/20 Iteration:2300 Train loss: 0.00103393
Epochs:15/20 Iteration:2400 Train loss: 0.00045038
Epochs:16/20 Iteration:2500 Train loss: 0.00022164
Epochs:16/20 Iteration:2600 Train loss: 0.00026206
Epochs:17/20 Iteration:2700 Train loss: 0.00279484
Epochs:17/20 Iteration:2800 Train loss: 0.00024887
Epochs:18/20 Iteration:2900 Train loss: 0.00263336
Epochs:19/20 Iteration:3000 Train loss: 0.00071482
Epochs:19/20 Iteration:3100 Train loss: 0.00026286

测试

with session.as_default() as sess: ## 测试结果 feed_dict = {x:test_x[:,:,None], keep_prob:1.0} results = sess.run(predictions, feed_dict=feed_dict) plt.plot(results,'r', label='predicted') plt.plot(test_y, 'g--', label='real sin') plt.legend() plt.show()

png


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM