Centos7安裝TensorFlow
1.1.安裝Centos7
https://blog.csdn.net/monkey131499/article/details/51169210
2.安裝Python3
查看當前Python版本信息,命令(python -v),Centos7默認的Python版本是2.7.5
下載Python3:
wget https://www.python.org/ftp/python/3.4.1/Python-3.4.1.tgz
解壓編譯安裝
# tar zxvf Python-3.4.1.tgz
# cd Python-3.4.1
# ./configure
# make
# make install
本虛擬機不需要覆蓋版本
若要覆蓋
,。看文檔
3.安裝Python-pip
https://blog.csdn.net/yulei_qq/article/details/52984334
4.安裝TensorFlow
https://blog.csdn.net/monkey131499/article/details/51169210
centos 7 下搭建 tensorflow+keras 深度學習環境
https://blog.csdn.net/huangfei711/article/details/78606159
Linux下安裝Anaconda
https://jingyan.baidu.com/article/20b68a8893ae50796cec62b4.html
Ubuntu安裝
- Ubuntu安裝
https://jingyan.baidu.com/article/3c48dd348bc005e10be358eb.html
- ubuntu下如何安裝Tensorflow
https://www.cnblogs.com/tsingke/p/7171270.html
- Ubuntu16.04下Anaconda安裝完成后conda:找不到命令
https://blog.csdn.net/xianglao1935/article/details/80510494
- 4在anaconda中安裝、切換python的版本:2.7~3.6
.https://blog.csdn.net/x_ym/article/details/78995472
- 裝Docker
https://docs.docker.com/install/linux/docker-ce/ubuntu/ 最新
或者
https://blog.csdn.net/yxgxy270187133/article/details/48492937 學習版
用 docker -v 測試
用 sudo docker run hello-world 測試
- 基於Docker的TensorFlow 環境搭建
https://www.cnblogs.com/dyufei/p/8027764.html
或者:https://www.jb51.net/article/135441.htm
https://www.jb51.net/article/135441.htm 使用說明
- 把Docker安裝為自啟動服務
https://blog.csdn.net/pipisorry/article/details/50803028
- docker + jupyter +tensorflow +opencv +tensorboard:
Tensorflow+opencv 組合鏡像:
https://blog.csdn.net/chenming_hnu/article/details/70184543
組合鏡像+tensorboard:
參考:https://blog.csdn.net/qq_29831979/article/details/79453641
docker run --name my-tf-1 -dit -p 8888:8888 -p 6006:6006 tensorflow:tensorflowCV 即可!!
打開8888網站,然后會需要token,返回終端輸入 sudo docker my-tf-1查看
這一步,可以通過
①# tensorboard --inspect --logdir="/notebooks/graph/dataflow" 看能否打開文件
②檢查6006 的路徑是否正確
下面的不對,可用於anaconda:
組合鏡像+tensorboard:
https://www.cnblogs.com/dyufei/p/8094507.html
命令:
docker volume create --name notebooks
docker volume create --name logs
sudo mkdir /home/dyufei/docker/notebooks
sudo mkdir /home/dyufei/docker/logs