matlab、sklearn 中的數據預處理


數據預處理(normalize、scale)

0. 使用 PCA 降維

  • matlab:

    [coeff, score] = pca(A);
    reducedDimension = coeff(:,1:5);
    reducedData = A * reducedDimension;

1. 最大最小映射(matlab)

[trainx, s1] = mapminmax(trainx);
testx = mapminmax('apply', test1, s1);

2. sklearn.preprocessing

去均值時,在測試集上進行預測時減去的均值是訓練集上得到的均值;

import sklearn.preprocessing as prep

def standard_scale(X_train, X_test):
    preprocessor = prep.StandardScaler().fit(X_train)
    X_train = preprocessor.transform(X_train)
    X_test = preprocessor.transform(X_test)
    return X_train, X_test


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM