關於Matlab的Nerual Network Toolbox中TrainOptions的Loss Function的理解


TrainOptions函數用處如下:

options = trainingOptions(solverName)
options = trainingOptions(solverName,Name,Value)
 
options = trainingOptions('sgdm',...
    'LearnRateSchedule','piecewise',...
    'LearnRateDropFactor',0.2,...
    'LearnRateDropPeriod',5,...
    'MaxEpochs',20,...
    'MiniBatchSize',64,...
    'Plots','training-progress')

 具體可以點擊網頁

 

而損失函數的用處是和最后一層名字相關 原文說明如下:

Training loss, smoothed training loss, and validation loss — The loss on each mini-batch, its smoothed version, and the loss on the validation set, respectively. If the final layer of your network is a classificationLayer, then the loss function is the cross entropy loss. For more information about loss functions for classification and regression problems, see Output Layers.

所以說 所有網絡中最后有一層是classificationLayer的 都是使用cross entropy交叉熵函數作為損失函數的。


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM