关于Matlab的Nerual Network Toolbox中TrainOptions的Loss Function的理解


TrainOptions函数用处如下:

options = trainingOptions(solverName)
options = trainingOptions(solverName,Name,Value)
 
options = trainingOptions('sgdm',...
    'LearnRateSchedule','piecewise',...
    'LearnRateDropFactor',0.2,...
    'LearnRateDropPeriod',5,...
    'MaxEpochs',20,...
    'MiniBatchSize',64,...
    'Plots','training-progress')

 具体可以点击网页

 

而损失函数的用处是和最后一层名字相关 原文说明如下:

Training loss, smoothed training loss, and validation loss — The loss on each mini-batch, its smoothed version, and the loss on the validation set, respectively. If the final layer of your network is a classificationLayer, then the loss function is the cross entropy loss. For more information about loss functions for classification and regression problems, see Output Layers.

所以说 所有网络中最后有一层是classificationLayer的 都是使用cross entropy交叉熵函数作为损失函数的。


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM