首先分析include頭文件下的slamBase.h文件
# pragma once // 各種頭文件 // C++標准庫 #include <fstream> #include <vector> #include <map> using namespace std; // Eigen #include <Eigen/Core> #include <Eigen/Geometry> // OpenCV #include <opencv2/core/core.hpp> #include <opencv2/highgui/highgui.hpp> #include <opencv2/calib3d/calib3d.hpp> // PCL #include <pcl/io/pcd_io.h> #include <pcl/point_types.h> #include <pcl/common/transforms.h> #include <pcl/visualization/cloud_viewer.h> #include <pcl/filters/voxel_grid.h> //體素濾波器 進行降采樣 #include <pcl/filters/statistical_outlier_removal.h> //統計濾波器 去除 孤立點 // 類型定義 typedef pcl::PointXYZRGBA PointT; typedef pcl::PointCloud<PointT> PointCloud; // 相機內參結構 struct CAMERA_INTRINSIC_PARAMETERS { double cx, cy, fx, fy, scale; }; // 幀結構 struct FRAME { cv::Mat rgb, depth; //該幀對應的彩色圖與深度圖 cv::Mat desp; //特征描述子 vector<cv::KeyPoint> kp; //關鍵點 }; // PnP 結果 struct RESULT_OF_PNP { cv::Mat rvec, tvec; int inliers; }; // 函數接口 // image2PonitCloud 將rgb圖轉換為點雲 PointCloud::Ptr image2PointCloud( cv::Mat& rgb, cv::Mat& depth, CAMERA_INTRINSIC_PARAMETERS& camera ); // point2dTo3d 將單個點從圖像坐標轉換為空間坐標 // input: 3維點Point3f (u,v,d) cv::Point3f point2dTo3d( cv::Point3f& point, CAMERA_INTRINSIC_PARAMETERS& camera ); // computeKeyPointsAndDesp 同時提取關鍵點與特征描述子 void computeKeyPointsAndDesp( FRAME& frame, string detector, string descriptor ); // estimateMotion 計算兩個幀之間的運動 // 輸入:幀1和幀2, 相機內參 RESULT_OF_PNP estimateMotion( FRAME& frame1, FRAME& frame2, CAMERA_INTRINSIC_PARAMETERS& camera ); // cvMat2Eigen, 將cv的旋轉矢量與位移矢量轉換為變換矩陣,類型為Eigen::Isometry3d Eigen::Isometry3d cvMat2Eigen( cv::Mat& rvec, cv::Mat& tvec ); // joinPointCloud , 組合點雲 PointCloud::Ptr joinPointCloud( PointCloud::Ptr original, FRAME& newFrame, Eigen::Isometry3d T, CAMERA_INTRINSIC_PARAMETERS& camera ) ; // 參數讀取類 class ParameterReader { public: map<string, string> data; public: ParameterReader( string filename="./parameters.txt" ) { ifstream fin( filename.c_str() ); if (!fin) { cerr<<"parameter file does not exist."<<endl; return; } while(!fin.eof()) { string str; getline( fin, str ); if (str[0] == '#') { // 以‘#’開頭的是注釋 continue; } int pos = str.find("="); if (pos == -1) continue; string key = str.substr( 0, pos ); string value = str.substr( pos+1, str.length() ); data[key] = value; if ( !fin.good() ) break; } } string getData( string key ) { map<string, string>::iterator iter = data.find(key); if (iter == data.end()) { cerr<<"Parameter name "<<key<<" not found!"<<endl; return string("NOT_FOUND"); } return iter->second; } }; inline static CAMERA_INTRINSIC_PARAMETERS getDefaultCamera() { ParameterReader pd; CAMERA_INTRINSIC_PARAMETERS camera; camera.fx = atof( pd.getData( "camera.fx" ).c_str()); camera.fy = atof( pd.getData( "camera.fy" ).c_str()); camera.cx = atof( pd.getData( "camera.cx" ).c_str()); camera.cy = atof( pd.getData( "camera.cy" ).c_str()); camera.scale = atof( pd.getData( "camera.scale" ).c_str() ); return camera; }
從parameters.txt讀取相機內參函數,參數不寫進程序,修改時不需要重新編譯,只需要修改參數文件。
inline static CAMERA_INTRINSIC_PARAMETERS getDefaultCamera() { ParameterReader pd; CAMERA_INTRINSIC_PARAMETERS camera; camera.fx = atof( pd.getData( "camera.fx" ).c_str()); camera.fy = atof( pd.getData( "camera.fy" ).c_str()); camera.cx = atof( pd.getData( "camera.cx" ).c_str()); camera.cy = atof( pd.getData( "camera.cy" ).c_str()); camera.scale = atof( pd.getData( "camera.scale" ).c_str() ); return camera; }
getDefaultCamera()函數返回的是CAMERA_INTRINSIC_PARAMETERS結構,獲得所有相機內參(其中用到class ParameterReader類)。class ParameterReader類,成員函數為getData()。class ParameterReader類得到一個data(參數文件左邊為key,右邊為value),而成員函數為getData()根據key獲得對應的value( 如camera.fx = atof( pd.getData( "camera.fx" ).c_str()) )。
以上slamBase.h中源函數在slamBase.cpp中的實現
#include "slamBase.h" PointCloud::Ptr image2PointCloud( cv::Mat& rgb, cv::Mat& depth, CAMERA_INTRINSIC_PARAMETERS& camera ) { PointCloud::Ptr cloud ( new PointCloud ); for (int m = 0; m < depth.rows; m+=2) for (int n=0; n < depth.cols; n+=2) { // 獲取深度圖中(m,n)處的值 ushort d = depth.ptr<ushort>(m)[n]; // d 可能沒有值,若如此,跳過此點 if (d == 0 || d>=4096) continue; // d 存在值,則向點雲增加一個點 PointT p; // 計算這個點的空間坐標 p.z = double(d) / camera.scale; p.x = (n - camera.cx) * p.z / camera.fx; p.y = (m - camera.cy) * p.z / camera.fy; // 從rgb圖像中獲取它的顏色 // rgb是三通道的BGR格式圖,所以按下面的順序獲取顏色 p.b = rgb.ptr<uchar>(m)[n*3]; p.g = rgb.ptr<uchar>(m)[n*3+1]; p.r = rgb.ptr<uchar>(m)[n*3+2]; // 把p加入到點雲中 cloud->points.push_back( p ); } // 設置並保存點雲 cloud->height = 1; cloud->width = cloud->points.size(); cloud->is_dense = false; return cloud; } cv::Point3f point2dTo3d( cv::Point3f& point, CAMERA_INTRINSIC_PARAMETERS& camera ) { cv::Point3f p; // 3D 點 p.z = double( point.z ) / camera.scale; p.x = ( point.x - camera.cx) * p.z / camera.fx; p.y = ( point.y - camera.cy) * p.z / camera.fy; return p; } // computeKeyPointsAndDesp 同時提取關鍵點與特征描述子 void computeKeyPointsAndDesp( FRAME& frame ) { cv::Ptr<cv::FeatureDetector> _detector; cv::Ptr<cv::DescriptorExtractor> _descriptor; _detector = cv::ORB::create(); _descriptor = cv::ORB::create(); /* if (!_detector || !_descriptor) { cerr<<"Unknown detector or discriptor type !"<<detector<<","<<descriptor<<endl; return; } */ _detector->detect( frame.rgb, frame.kp ); _descriptor->compute( frame.rgb, frame.kp, frame.desp ); return; } // estimateMotion 計算兩個幀之間的運動 // 輸入:幀1和幀2 // 輸出:rvec 和 tvec RESULT_OF_PNP estimateMotion( FRAME& frame1, FRAME& frame2, CAMERA_INTRINSIC_PARAMETERS& camera ) { static ParameterReader pd; vector< cv::DMatch > matches; cv::BFMatcher matcher; matcher.match( frame1.desp, frame2.desp, matches ); RESULT_OF_PNP result; vector< cv::DMatch > goodMatches; double minDis = 9999; double good_match_threshold = atof( pd.getData( "good_match_threshold" ).c_str() ); for ( size_t i=0; i<matches.size(); i++ ) { if ( matches[i].distance < minDis ) minDis = matches[i].distance; } cout<<"min dis = "<<minDis<<endl; if ( minDis < 10 ) minDis = 10; for ( size_t i=0; i<matches.size(); i++ ) { if (matches[i].distance < good_match_threshold*minDis ) goodMatches.push_back( matches[i] ); } cout<<"good matches: "<<goodMatches.size()<<endl; if (goodMatches.size() <= 5) { result.inliers = -1; return result; } // 第一個幀的三維點 vector<cv::Point3f> pts_obj; // 第二個幀的圖像點 vector< cv::Point2f > pts_img; // 相機內參 for (size_t i=0; i<goodMatches.size(); i++) { // query 是第一個, train 是第二個 cv::Point2f p = frame1.kp[goodMatches[i].queryIdx].pt; // 獲取d是要小心!x是向右的,y是向下的,所以y才是行,x是列! ushort d = frame1.depth.ptr<ushort>( int(p.y) )[ int(p.x) ]; if (d == 0 || d>=4096) continue; pts_img.push_back( cv::Point2f( frame2.kp[goodMatches[i].trainIdx].pt ) ); // 將(u,v,d)轉成(x,y,z) cv::Point3f pt ( p.x, p.y, d ); cv::Point3f pd = point2dTo3d( pt, camera ); pts_obj.push_back( pd ); } if (pts_obj.size() ==0 || pts_img.size()==0) { result.inliers = -1; return result; } double camera_matrix_data[3][3] = { {camera.fx, 0, camera.cx}, {0, camera.fy, camera.cy}, {0, 0, 1} }; // 構建相機矩陣 cv::Mat cameraMatrix( 3, 3, CV_64F, camera_matrix_data ); cv::Mat rvec, tvec, inliers; // 求解pnp cv::solvePnPRansac( pts_obj, pts_img, cameraMatrix, cv::Mat(), rvec, tvec, false, 100, 1.0, 0.95, inliers ,cv::SOLVEPNP_ITERATIVE); result.rvec = rvec; result.tvec = tvec; result.inliers = inliers.rows; return result; } // cvMat2Eigen (R,t -> T) ,將cv的旋轉矢量與位移矢量轉換為變換矩陣,類型為Eigen::Isometry3d Eigen::Isometry3d cvMat2Eigen( cv::Mat& rvec, cv::Mat& tvec ) { cv::Mat R; cv::Rodrigues( rvec, R ); Eigen::Matrix3d r; for ( int i=0; i<3; i++ ) for ( int j=0; j<3; j++ ) r(i,j) = R.at<double>(i,j); // 將平移向量和旋轉矩陣轉換成變換矩陣 Eigen::Isometry3d T = Eigen::Isometry3d::Identity(); Eigen::AngleAxisd angle(r); T = angle; T(0,3) = tvec.at<double>(0,0); T(1,3) = tvec.at<double>(1,0); T(2,3) = tvec.at<double>(2,0); return T; } // joinPointCloud // 輸入:原始點雲,新來的幀以及它的位姿 // 輸出:將新來幀加到原始幀后的圖像 PointCloud::Ptr joinPointCloud( PointCloud::Ptr original, FRAME& newFrame, Eigen::Isometry3d T, CAMERA_INTRINSIC_PARAMETERS& camera ) { PointCloud::Ptr newCloud = image2PointCloud( newFrame.rgb, newFrame.depth, camera ); //新的點雲 // depth filter and statistical removal PointCloud::Ptr df ( new PointCloud ); pcl::StatisticalOutlierRemoval<PointT> statistical_filter; //newCloud -> df statistical_filter.setMeanK(50); statistical_filter.setStddevMulThresh(1.0); statistical_filter.setInputCloud(newCloud); statistical_filter.filter( *df ); // 合並點雲 PointCloud::Ptr output (new PointCloud()); pcl::transformPointCloud( *original, *output, T.matrix() ); //將舊點雲轉到當前點雲坐標系下 *df += *output; //新點雲 + 之前的點雲 //加入newCloud后,新的點雲,進行濾波 /////////////////////////////////////////////////////////// // Voxel grid 濾波降采樣 static pcl::VoxelGrid<PointT> voxel; static ParameterReader pd; //參數讀取 double gridsize = atof( pd.getData("voxel_grid").c_str() ); //分辨率 voxel.setLeafSize( gridsize, gridsize, gridsize ); //df -> tmp voxel.setInputCloud( df ); PointCloud::Ptr tmp( new PointCloud() ); voxel.filter( *tmp ); /////////////////////////////////////////////////////////// return tmp; }
將rgb圖和對應的深度圖轉為點雲(包含相機內參結構)
PointCloud::Ptr image2PointCloud( cv::Mat& rgb, cv::Mat& depth, CAMERA_INTRINSIC_PARAMETERS& camera ) { PointCloud::Ptr cloud ( new PointCloud ); for (int m = 0; m < depth.rows; m+=2) for (int n=0; n < depth.cols; n+=2) { // 獲取深度圖中(m,n)處的值 ushort d = depth.ptr<ushort>(m)[n]; // d 可能沒有值,若如此,跳過此點 if (d == 0 || d>=4096) continue; // d 存在值,則向點雲增加一個點 PointT p; // 計算這個點的空間坐標 p.z = double(d) / camera.scale; p.x = (n - camera.cx) * p.z / camera.fx; p.y = (m - camera.cy) * p.z / camera.fy; // 從rgb圖像中獲取它的顏色 // rgb是三通道的BGR格式圖,所以按下面的順序獲取顏色 p.b = rgb.ptr<uchar>(m)[n*3]; p.g = rgb.ptr<uchar>(m)[n*3+1]; p.r = rgb.ptr<uchar>(m)[n*3+2]; // 把p加入到點雲中 cloud->points.push_back( p ); } // 設置並保存點雲 cloud->height = 1; cloud->width = cloud->points.size(); cloud->is_dense = false; return cloud; }
// 獲取深度圖中(m,n)處的值
ushort d = depth.ptr<ushort>(m)[n]; depth是深度圖
PointT p;一個點包含位置(p.x ,p.y ,p.z),和顏色RGB(p.b , p.g , p.r),將點p放入點雲cloud中。
// computeKeyPointsAndDesp 同時提取關鍵點與特征描述子 void computeKeyPointsAndDesp( FRAME& frame ) { cv::Ptr<cv::FeatureDetector> _detector; //特征點提取 cv::Ptr<cv::DescriptorExtractor> _descriptor; //描述子 _detector = cv::ORB::create(); _descriptor = cv::ORB::create(); /* if (!_detector || !_descriptor) { cerr<<"Unknown detector or discriptor type !"<<detector<<","<<descriptor<<endl; return; } */ _detector->detect( frame.rgb, frame.kp ); //rgb圖片frame.rgb, -> frame.kp特征點 _descriptor->compute( frame.rgb, frame.kp, frame.desp ); //(frame.rgb,frame.kp) -> frame.desp描述子 return; }
使用引用類型,不需要返回任何值。void computeKeyPointsAndDesp( FRAME& frame )傳入的值為frame結構,包含rgb,depth,desp,kp,求得的frame.rgb,frame.desp,與frame.rgb(彩色圖片)對應。
// estimateMotion 計算兩個幀之間的運動 // 輸入:幀1和幀2 // 輸出:rvec 和 tvec RESULT_OF_PNP estimateMotion( FRAME& frame1, FRAME& frame2, CAMERA_INTRINSIC_PARAMETERS& camera ) { static ParameterReader pd; vector< cv::DMatch > matches; cv::BFMatcher matcher; matcher.match( frame1.desp, frame2.desp, matches ); RESULT_OF_PNP result; vector< cv::DMatch > goodMatches; double minDis = 9999; double good_match_threshold = atof( pd.getData( "good_match_threshold" ).c_str() );
for ( size_t i=0; i<matches.size(); i++ )//輸出最小匹配距離 { if ( matches[i].distance < minDis ) minDis = matches[i].distance; } cout<<"min dis = "<<minDis<<endl;
if ( minDis < 10 ) minDis = 10; for ( size_t i=0; i<matches.size(); i++ ) { if (matches[i].distance < good_match_threshold*minDis ) //小於最小距離的十倍,則將該匹配放入goodMatches中 goodMatches.push_back( matches[i] ); } cout<<"good matches: "<<goodMatches.size()<<endl; if (goodMatches.size() <= 5) //匹配點太少時,不進行之后計算 { result.inliers = -1; return result; } // 第一個幀的三維點 vector<cv::Point3f> pts_obj; // 第二個幀的圖像點 vector< cv::Point2f > pts_img; // 相機內參,獲得pts_img,pts_obj for (size_t i=0; i<goodMatches.size(); i++) { // query 是第一個, train 是第二個 cv::Point2f p = frame1.kp[goodMatches[i].queryIdx].pt; //取第一幅圖最佳匹配點坐標 // 獲取d是要小心!x是向右的,y是向下的,所以y才是行,x是列! ushort d = frame1.depth.ptr<ushort>( int(p.y) )[ int(p.x) ]; //取以上坐標的深度 if (d == 0 || d>=4096) continue; pts_img.push_back( cv::Point2f( frame2.kp[goodMatches[i].trainIdx].pt ) ); //取第二幅圖最佳匹配點像素坐標 // 將(u,v,d)轉成(x,y,z) cv::Point3f pt ( p.x, p.y, d ); cv::Point3f pd = point2dTo3d( pt, camera ); pts_obj.push_back( pd ); } if (pts_obj.size() ==0 || pts_img.size()==0) { result.inliers = -1; return result; } //數組,相機內參 double camera_matrix_data[3][3] =
{ {camera.fx, 0, camera.cx}, {0, camera.fy, camera.cy}, {0, 0, 1} }; // 構建相機矩陣 cv::Mat cameraMatrix( 3, 3, CV_64F, camera_matrix_data ); cv::Mat rvec, tvec, inliers; //rvec,旋轉向量 tvec,位移向量 // 求解pnp cv::solvePnPRansac( pts_obj, pts_img, cameraMatrix, cv::Mat(), rvec, tvec, false, 100, 1.0, 0.95, inliers ,cv::SOLVEPNP_ITERATIVE); result.rvec = rvec; result.tvec = tvec; result.inliers = inliers.rows; return result; }
RESULT_OF_PNP estimateMotion( FRAME& frame1, FRAME& frame2, CAMERA_INTRINSIC_PARAMETERS& camera )函數返回的類型是RESULT_OF_PNP結構包含數據為旋轉向量rvec,位移向量tvec,inliers。其中用到的函數是cv::solvePnPRansac()https://blog.csdn.net/jay463261929/article/details/53818611
https://docs.opencv.org/master/d9/d0c/group__calib3d.html#ga50620f0e26e02caa2e9adc07b5fbf24e
其中最主要的程序為
// 相機內參,獲得pts_img,pts_obj for (size_t i=0; i<goodMatches.size(); i++) { // query 是第一個, train 是第二個 cv::Point2f p = frame1.kp[goodMatches[i].queryIdx].pt; //取第一幅圖最佳匹配點坐標 // 獲取d是要小心!x是向右的,y是向下的,所以y才是行,x是列! ushort d = frame1.depth.ptr<ushort>( int(p.y) )[ int(p.x) ]; //取以上坐標的深度 if (d == 0 || d>=4096) continue; // 將(u,v,d)轉成(x,y,z) cv::Point3f pt ( p.x, p.y, d ); cv::Point3f pd = point2dTo3d( pt, camera ); pts_obj.push_back( pd ); pts_img.push_back( cv::Point2f( frame2.kp[goodMatches[i].trainIdx].pt ) ); //取第二幅圖最佳匹配點像素坐標 }
獲得第一幅圖特征點的3維點空間點坐標pts_obj,和對應第二幅圖特征點的圖像坐標pts_img。
frame1.kp[goodMatches[i].queryIdx]圖像frame1特征點對應於frame2.kp[goodMatches[i].trainIdx]圖像frame2特征點。frame1.kp[goodMatches[i].queryIdx].pt為特征點坐標。
點雲合成
// joinPointCloud // 輸入:原始點雲,新來的幀以及它的位姿 // 輸出:將新來幀加到原始幀后的圖像 PointCloud::Ptr joinPointCloud( PointCloud::Ptr original, FRAME& newFrame, Eigen::Isometry3d T, CAMERA_INTRINSIC_PARAMETERS& camera ) { PointCloud::Ptr newCloud = image2PointCloud( newFrame.rgb, newFrame.depth, camera ); //新的點雲 // depth filter and statistical removal PointCloud::Ptr df ( new PointCloud ); pcl::StatisticalOutlierRemoval<PointT> statistical_filter; //newCloud -> df statistical_filter.setMeanK(50); statistical_filter.setStddevMulThresh(1.0); statistical_filter.setInputCloud(newCloud); statistical_filter.filter( *df ); // 合並點雲 PointCloud::Ptr output (new PointCloud()); pcl::transformPointCloud( *original, *output, T.matrix() ); //將舊點雲轉到當前點雲坐標系下 *df += *output; //新點雲 + 之前的點雲 //加入newCloud后,新的點雲,進行濾波 /////////////////////////////////////////////////////////// // Voxel grid 濾波降采樣 static pcl::VoxelGrid<PointT> voxel; static ParameterReader pd; //參數讀取 double gridsize = atof( pd.getData("voxel_grid").c_str() ); //分辨率 voxel.setLeafSize( gridsize, gridsize, gridsize ); //df -> tmp voxel.setInputCloud( df ); PointCloud::Ptr tmp( new PointCloud() ); voxel.filter( *tmp ); /////////////////////////////////////////////////////////// return tmp; }
其中包含兩個濾波,一個是統計濾波器,用於去除孤立噪聲點,另一個是體素濾波器,進行降采樣,保證了在某個一定大小的立方體內僅有一個點。
視覺里程計visualOdometry.cpp
#include <iostream> #include <fstream> #include <sstream> using namespace std; #include "slamBase.h" // 給定index,讀取一幀數據 FRAME readFrame( int index, ParameterReader& pd ); // 度量運動的大小 double normofTransform( cv::Mat rvec, cv::Mat tvec ); int main( int argc, char** argv ) { ParameterReader pd; int startIndex = atoi( pd.getData( "start_index" ).c_str() ); int endIndex = atoi( pd.getData( "end_index" ).c_str() ); // initialize cout<<"Initializing ..."<<endl; int currIndex = startIndex; // 當前索引為currIndex FRAME lastFrame = readFrame( currIndex, pd ); // 上一幀數據 // 我們總是在比較currFrame和lastFrame /* string detector = pd.getData( "detector" ); string descriptor = pd.getData( "descriptor" ); */ CAMERA_INTRINSIC_PARAMETERS camera = getDefaultCamera(); //相機內參 computeKeyPointsAndDesp( lastFrame); PointCloud::Ptr cloud = image2PointCloud( lastFrame.rgb, lastFrame.depth, camera ); pcl::visualization::CloudViewer viewer("viewer"); // 是否顯示點雲 bool visualize = pd.getData("visualize_pointcloud")==string("yes"); int min_inliers = atoi( pd.getData("min_inliers").c_str() ); double max_norm = atof( pd.getData("max_norm").c_str() ); for ( currIndex=startIndex+1; currIndex<endIndex; currIndex++ ) { cout<<"Reading files "<<currIndex<<endl; FRAME currFrame = readFrame( currIndex,pd ); // 讀取currFrame computeKeyPointsAndDesp( currFrame ); // 比較currFrame 和 lastFrame RESULT_OF_PNP result = estimateMotion( lastFrame, currFrame, camera ); if ( result.inliers < min_inliers ) //inliers不夠,放棄該幀 continue; // 計算運動范圍是否太大 double norm = normofTransform(result.rvec, result.tvec); cout<<"norm = "<<norm<<endl; if ( norm >= max_norm ) { cout<<"\033[41;36m move too much \033[0m "<<endl; continue; } Eigen::Isometry3d T = cvMat2Eigen( result.rvec, result.tvec ); cout<<"T="<<T.matrix()<<endl; cloud = joinPointCloud( cloud, currFrame, T, camera ); ///////////////////////////////////////////////////////////////////// PointCloud::Ptr Cloudreverse (new PointCloud()); Eigen::Isometry3d T1 = Eigen::Isometry3d::Identity();//x T1(0,0) = 1; T1(0,1) = 0; T1(1,0) = 0; T1(1,1) = -1; T1(2,2) = -1; pcl::transformPointCloud( *cloud, *Cloudreverse, (T1).matrix() ); ////////////////////////////////////////////////////////////////////////// if ( visualize == true ) viewer.showCloud( Cloudreverse ); lastFrame = currFrame; } pcl::io::savePCDFile( "data/result.pcd", *cloud ); return 0; } FRAME readFrame( int index, ParameterReader& pd ) { FRAME f; string rgbDir = pd.getData("rgb_dir"); string depthDir = pd.getData("depth_dir"); string rgbExt = pd.getData("rgb_extension"); string depthExt = pd.getData("depth_extension"); stringstream ss; ss<<rgbDir<<index<<rgbExt; string filename; ss>>filename; f.rgb = cv::imread( filename ); ss.clear(); filename.clear(); ss<<depthDir<<index<<depthExt; ss>>filename; f.depth = cv::imread( filename, -1 ); return f; } double normofTransform( cv::Mat rvec, cv::Mat tvec ) { return fabs(min(cv::norm(rvec), 2*M_PI-cv::norm(rvec)))+ fabs(cv::norm(tvec)); }
參數文件(parameters.txt):
# 特征類型 detector=ORB descriptor=ORB # 篩選good match的倍數 good_match_threshold=10 # camera camera.cx=682.3; camera.cy=254.9; camera.fx=979.8; camera.fy=942.8; camera.scale=1000.0; # part 5 # 數據相關 # 起始與終止索引 start_index=1 end_index=300 # 數據所在目錄 rgb_dir=./data/rgb_png/ rgb_extension=.png depth_dir=./data/depth_png/ depth_extension=.png # 點雲分辨率 voxel_grid=0.005 # 是否實時可視化 visualize_pointcloud=yes # 最小匹配數量 min_good_match=10 # 最小內點 min_inliers=5 # 最大運動誤差 max_norm=0.3
程序框圖: