判斷一個點是否在三角形內


面積法:若點P在三角形ABC內,則三角形ABP+三角形ACP+三角形BCP的面積等於三角形ABC

    已知三角形三點坐標ABC,如何求三角形面積呢?

    根據叉乘公式,向量A=(x1,y1) ,向量B=(x2,y2),A x B = x1*y2 - x2*y1

    此時求得的是向量A和向量B的形成的平行四邊形的面積,除以2就是三角形的面積了

代碼:

#include <iostream>
#include <cstring>
#include <queue>
#include <cmath>
#include <cstdio>
#include <algorithm>
using namespace std;
const double eps = 1e-8;
struct point
{
    double x,y;
};
double solve(point a,point b,point c)
{
    point A;
    A.x = b.x-a.x;
    A.y = b.y-a.y;
    B.x = c.x-a.x;
    B.y = c.y-a.y;
    return (A.x*B.y-B.x*A.y)/2.0;
}

int main()
{
    point A,B,C,P;
    cin>>A.x>>A.y;
    cin>>B.x>>B.y;
    cin>>C.x>>C.y;
    cin>>P.x>>P.y;
    double sum = solve(A,B,C);
    double k=0;
    k + = solve(A,B,P);
    k + = solve(B,C,P);
    k + = solve(A,C,P);
    if((k-sum)>eps) cout<<"在三角形外"<<endl;
    else cout<<"在三角形內"<<endl;
    return 0;
}

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM