探索酒類消費數據
相關數據見(github)
步驟1 - 導入pandas庫
import pandas as pd
步驟2 - 數據集
path3 = "./data/drinks.csv" # drinks.csv
步驟3 將數據框命名為drinks
drinks = pd.read_csv(path3) drinks.head()
輸出:
步驟4 哪個大陸(continent)平均消耗的啤酒(beer)更多?
beeravg = drinks.groupby('continent').beer_servings.mean() beeravg.sort_values(ascending=False)
輸出:
步驟5 打印出每個大陸(continent)的紅酒消耗(wine_servings)的描述性統計值
drinks.groupby('continent').wine_servings.describe()
輸出:
步驟6 打印出每個大陸每種酒類別的消耗平均值
drinks.groupby('continent').mean()
輸出:
步驟7 打印出每個大陸每種酒類別的消耗中位數
drinks.groupby('continent').median()
輸出:
步驟8 打印出每個大陸對spirit飲品消耗的平均值,最大值和最小值
drinks.groupby('continent').spirit_servings.agg(['mean', 'min', 'max'])
輸出:
參考鏈接:
1、http://pandas.pydata.org/pandas-docs/stable/cookbook.html#cookbook
2、https://www.analyticsvidhya.com/blog/2016/01/12-pandas-techniques-python-data-manipulation/