本文的目的是記錄meshgrid()的理解過程:
step1. 通過一個示例引入創建網格點矩陣;
step2. 基於步驟1,說明meshgrid()的作用;
step3. 詳細解讀meshgrid()的官網定義;
說明:step1和2 的數據都是基於笛卡爾坐標系的矩陣,目的是為了方便討論。
step1. 通過一個示例引入創建網格點矩陣;
示例1,創建一個2行3列的網格點矩陣。
1 #!/usr/bin/env python3 2 #-*- coding:utf-8 -*- 3 ############################ 4 #File Name: meshgrid1.py 5 #Brief: 6 #Author: frank 7 #Mail: frank0903@aliyun.com 8 #Created Time:2018-06-14 21:33:14 9 ############################ 10 import numpy as np 11 import matplotlib.pyplot as plt 12 13 X = np.array([[0, 0.5, 1],[0, 0.5, 1]]) 14 print("X的維度:{},shape:{}".format(X.ndim, X.shape)) 15 Y = np.array([[0, 0, 0],[1, 1, 1]]) 16 print("Y的維度:{},shape:{}".format(Y.ndim, Y.shape)) 17 18 plt.plot(X, Y, 'o--') 19 plt.grid(True) 20 plt.show()
X矩陣是:[[0. 0.5 1. ], [0. 0.5 1. ]]
Y矩陣是:[[0 0 0],[1 1 1]]
step2. meshgrid()的作用;
當要描繪的 矩陣網格點的數據量小的時候,可以用上述方法構造網格點坐標數據;
但是如果是一個(256, 100)的整數矩陣網格,要怎樣構造數據呢?
方法1:將x軸上的100個整數點組成的行向量,重復256次,構成shape(256,100)的X矩陣;將y軸上的256個整數點組成列向量,重復100次構成shape(256,100)的Y矩陣
顯然方法1的數據構造過程很繁瑣,也不方便調用,那么有沒有更好的辦法呢?of course!!!
那么meshgrid()就顯示出它的作用了
使用meshgrid方法,你只需要構造一個表示x軸上的坐標的向量和一個表示y軸上的坐標的向量;然后作為參數給到meshgrid(),該函數就會返回相應維度的兩個矩陣;
例如,你想構造一個2行3列的矩陣網格點,那么x生成一個shape(3,)的向量,y生成一個shape(2,)的向量,將x,y傳入meshgrid(),最后返回的X,Y矩陣的shape(2,3)
示例2,使用meshgrid()生成step1中的網格點矩陣
1 x = np.array([0, 0.5, 1]) 2 y = np.array([0,1]) 3 4 xv,yv = np.meshgrid(x, y) 5 print("xv的維度:{},shape:{}".format(xv.ndim, xv.shape)) 6 print("yv的維度:{},shape:{}".format(yv.ndim, yv.shape)) 7 8 plt.plot(xv, yv, 'o--') 9 plt.grid(True) 10 plt.show()
示例3,生成一個20行30列的網格點矩陣
1 x = np.linspace(0,500,30) 2 print("x的維度:{},shape:{}".format(x.ndim, x.shape)) 3 print(x) 4 y = np.linspace(0,500,20) 5 print("y的維度:{},shape:{}".format(y.ndim, y.shape)) 6 print(y) 7 8 xv,yv = np.meshgrid(x, y) 9 print("xv的維度:{},shape:{}".format(xv.ndim, xv.shape)) 10 print("yv的維度:{},shape:{}".format(yv.ndim, yv.shape)) 11 12 plt.plot(xv, yv, '.') 13 plt.grid(True) 14 plt.show()
step3. 詳細解讀meshgrid()的官網定義;
numpy.meshgrid(*xi, **kwargs)
Return coordinate matrices from coordinate vectors.
根據輸入的坐標向量生成對應的坐標矩陣
Parameters:
x1, x2,…, xn : array_like
1-D arrays representing the coordinates of a grid.
indexing : {‘xy’, ‘ij’}, optional
Cartesian (‘xy’, default) or matrix (‘ij’) indexing of output. See Notes for more details.
sparse : bool, optional
If True a sparse grid is returned in order to conserve memory. Default is False.
copy : bool, optional
If False, a view into the original arrays are returned in order to conserve memory.
Default is True. Please note that sparse=False, copy=False will likely return non-contiguous arrays.
Furthermore, more than one element of a broadcast array may refer to a single memory location.
If you need to write to the arrays, make copies first.
Returns:
X1, X2,…, XN : ndarray
For vectors x1, x2,…, ‘xn’ with lengths Ni=len(xi) ,
return (N1, N2, N3,...Nn) shaped arrays if indexing=’ij’
or (N2, N1, N3,...Nn) shaped arrays if indexing=’xy’
with the elements of xi repeated to fill the matrix along the first dimension for x1, the second for x2 and so on.
針對indexing參數的說明:
indexing只是影響meshgrid()函數返回的矩陣的表示形式,但並不影響坐標點
1 x = np.array([0, 0.5, 1]) 2 y = np.array([0,1]) 3 4 xv,yv = np.meshgrid(x, y) 5 print("xv的維度:{},shape:{}".format(xv.ndim, xv.shape)) 6 print("yv的維度:{},shape:{}".format(yv.ndim, yv.shape)) 7 print(xv) 8 print(yv) 9 10 plt.plot(xv, yv, 'o--') 11 plt.grid(True) 12 plt.show()
1 x = np.array([0, 0.5, 1]) 2 y = np.array([0,1]) 3 4 xv,yv = np.meshgrid(x, y,indexing='ij') 5 print("xv的維度:{},shape:{}".format(xv.ndim, xv.shape)) 6 print("yv的維度:{},shape:{}".format(yv.ndim, yv.shape)) 7 print(xv) 8 print(yv) 9 10 plt.plot(xv, yv, 'o--') 11 plt.grid(True) 12 plt.show()