RSA算法原理(簡單易懂)


1. 什么是RSA

RSA算法是現今使用最廣泛的公鑰密碼算法,也是號稱地球上最安全的加密算法。在了解RSA算法之前,先熟悉下幾個術語 
根據密鑰的使用方法,可以將密碼分為對稱密碼和公鑰密碼 
對稱密碼:加密和解密使用同一種密鑰的方式 
公鑰密碼:加密和解密使用不同的密碼的方式,因此公鑰密碼通常也稱為非對稱密碼。

2. RSA加密

RSA的加密過程可以使用一個通式來表達

 
EmodN密文=明文EmodN

也就是說RSA加密是對明文的E次方后除以N后求余數的過程。就這么簡單?對,就是這么簡單。 
從通式可知,只要知道E和N任何人都可以進行RSA加密了,所以說E、N是RSA加密的密鑰,也就是說E和N的組合就是公鑰,我們用(E,N)來表示公鑰

 
(E,N)公鑰=(E,N)

不過E和N不並不是隨便什么數都可以的,它們都是經過嚴格的數學計算得出的,關於E和N擁有什么樣的要求及其特性后面會講到。順便啰嗦一句E是加密(Encryption)的首字母,N是數字(Number)的首字母

3. RSA解密

RSA的解密同樣可以使用一個通式來表達

 
DmodN明文=密文DmodN

也就是說對密文進行D次方后除以N的余數就是明文,這就是RSA解密過程。知道D和N就能進行解密密文了,所以D和N的組合就是私鑰

 
(D,N)私鑰=(D,N)

從上述可以看出RSA的加密方式和解密方式是相同的,加密是求“E次方的mod N”;解密是求“D次方的mod N” 
此處D是解密(Decryption)的首字母;N是數字(Number)的首字母。

小結下

   
公鑰 (E,N)
私鑰 (D,N)
密鑰對 (E,D,N)
加密
 
EmodN密文=明文EmodN
解密
 
DmodN明文=密文DmodN

4. 生成密鑰對

既然公鑰是(E,N),私鑰是(D,N)所以密鑰對即為(E,D,N)但密鑰對是怎樣生成的?步驟如下:

  1. 求N
  2. 求L(L為中間過程的中間數)
  3. 求E
  4. 求D

4.1 求N

准備兩個質數p,q。這兩個數不能太小,太小則會容易破解,將p乘以q就是N

 
N=pqN=p∗q

4.2 求L

L 是 p-1 和 q-1的最小公倍數,可用如下表達式表示

 
L=lcmp1q1L=lcm(p-1,q-1)

4.3 求E

E必須滿足兩個條件:E是一個比1大比L小的數,E和L的最大公約數為1 
用gcd(X,Y)來表示X,Y的最大公約數則E條件如下:

1 < E < L

gcd(E,L)=1

之所以需要E和L的最大公約數為1是為了保證一定存在解密時需要使用的數D。現在我們已經求出了E和N也就是說我們已經生成了密鑰對中的公鑰了。

4.4 求D

數D是由數E計算出來的。D、E和L之間必須滿足以下關系:

1 < D < L

E*D mod L = 1

只要D滿足上述2個條件,則通過E和N進行加密的密文就可以用D和N進行解密。 
簡單地說條件2是為了保證密文解密后的數據就是明文。 
現在私鑰自然也已經生成了,密鑰對也就自然生成了。 
小結下:

   
求N N= p * q ;p,q為質數
求L L=lcm(p-1,q-1) ;L為p-1、q-1的最小公倍數
求E 1 < E < L,gcd(E,L)=1;E,L最大公約數為1(E和L互質)
求D 1 < D < L,E*D mod L = 1

5 實踐下吧

我們用具體的數字來實踐下RSA的密鑰對對生成,及其加解密對全過程。為方便我們使用較小數字來模擬。

5.1 求N

我們准備兩個很小對質數, 
p = 17 
q = 19 
N = p * q = 323

5.2 求L

L = lcm(p-1, q-1)= lcm(16,18) = 144 
144為16和18對最小公倍數

5.3 求E

求E必須要滿足2個條件:1 < E < L ,gcd(E,L)=1 
即1 < E < 144,gcd(E,144) = 1 
E和144互為質數,5顯然滿足上述2個條件 
故E = 5

此時公鑰=(E,N)= (5,323)

5.4 求D

求D也必須滿足2個條件:1 < D < L,E*D mod L = 1 
即1 < D < 144,5 * D mod 144 = 1 
顯然當D= 29 時滿足上述兩個條件 
1 < 29 < 144 
5*29 mod 144 = 145 mod 144 = 1 
此時私鑰=(D,N)=(29,323)

5.5 加密

准備的明文必須時小於N的數,因為加密或者解密都要mod N其結果必須小於N 
假設明文 = 123 
則 EmodN1235mod323=225密文=明文EmodN=1235mod323=225

5.6 解密

DmodN22529mod323=123明文=密文DmodN=22529mod323=123 
解密后的明文為123。

好了至此RSA的算法原理已經講解完畢,是不是很簡單?


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM