LCD有如下控制線:
CS:Chip Select 片選,低電平有效
RS:Register Select 寄存器選擇
WR:Write 寫信號,低電平有效
RD:Read 讀信號,低電平有效
RESET:重啟信號,低電平有效
DB0-DB15:數據線
假如這些線,全部用普通IO口控制。根據LCD控制芯片手冊(大部分控制芯片時序差不多):
如果情況如下:
DB0-DB15的IO全部為1(表示數據0xff),也可以為其他任意值,這里以0xff為例。
CS為0(表示選上芯片,CS拉低時,芯片對傳入的數據才會有效)RS為1(表示DB0-15上傳遞的是要被寫到寄存器的值),如果為0,表示傳遞的是數據。(這里原作者應該是搞反了,應該是:RS = 0時,表示讀寫寄存器;RS = 1表示讀寫數據RAM。)
WR為0,RD為1(表示是寫動作),反過來就是讀動作。
RESET一直為高,如果RESET為低,會導致芯片重啟。
這種情況,會導致一個值0xff被傳入芯片,被LCD控制芯片當作寫寄存器值去解析。LCD控制芯片收到DB0-15上的值之后,根據其他控制線的情況,它得出結論,這個0xff是用來設置寄存器的。一般情況下,LCD控制芯片會把傳入的寄存器值的高8位當做寄存器地址(因為芯片內部肯定不止一個寄存器),低8位當做真正的要賦給對應寄存器值。這樣,就完成了一個寫LCD控制芯片內部寄存器的時序。
如果上述情況不變,只將RS置低,那么得到的情況如下:LCD控制芯片會把DB0-15上的數據當做單純的數據值來處理。那么假如LCD處在畫圖狀態,這個傳入的值0xff,就會被顯示到對應的點上,0xffff就表示白色,那么對應的點就是白色。在這個數據值傳遞過來之前,程序肯定會通過設置寄存器值,告訴LCD控制芯片要寫的點的位置在哪里。
如果上述兩種情況都不變,分別把WR和RD的信號反過來(WR=1,RD=0),那么寫信號就會被變成讀信號。讀信號下,主控芯片需要去讀DB0-15的值,而LCD控制芯片就會去設置DB0-15的值,從而完成讀數據的時序。
讀寄存器的時序麻煩一點。第一步,先要將WR和RD都置低,主控芯片通過DB0-15傳入寄存器地址。第二步就和前面讀數據一樣,將WR置高,RD置低,讀出DB0-15的值即可。在這整個的過程中,RS一直為低。
好了,上面就是IO直接控制LCD的方法。假如放到STM32里面,用IO直接控制顯得效率很低。STM32有FSMC(其實其他芯片基本都有類似的總線功能),FSMC的好處就是你一旦設置好之后,WR、RD、DB0-DB15這些控制線和數據線,都是FSMC自動控制的。打個比方,當你在程序中寫到:
*(volatile unsigned short int *)(0x60000000)=val;
那么FSMC就會自動執行一個寫的操作,其對應的主控芯片的WE、RD這些腳,就會呈現出寫的時序出來(即WE=0,RD=1),數據val的值也會通過DB0-15自動呈現出來(即FSMC-D0:FSMC-D15=val)。地址0x60000000會被呈現在數據線上(即A0-A25=0,地址線的對應最麻煩,要根據具體情況來,好好看看FSMC手冊)。
那么在硬件上面,我們需要做的,僅僅是MCU和LCD控制芯片的連接關系:
WE-WR,均為低電平有效
RD-RD,均為低電平有效
FSMC-D0-15接LCD DB0-15
連接好之后,讀寫時序都會被FSMC自動完成。但是還有一個很關鍵的問題,就是RS沒有接,CS沒有接。因為在FSMC里面,根本就沒有對應RS和CS的腳。怎么辦呢?這個時候,有一個好方法,就是用某一根地址線來接RS。比如我們選擇了A16這根地址線來接,那么當我們要寫寄存器的時候,我們需要RS,也就是A16置高。軟件中怎么做呢?也就是將FSMC要寫的地址改成0x60020000,如下:
*(volatile unsigned short int *)(0x60020000)=val;
這個時候,A16在執行其他FSMC的同時會被拉高,因為A0-A18要呈現出地址0x60020000。0x60020000里面的Bit17=1,就會導致A16為1。
當要讀數據時,地址由0x60020000改為了0x60000000,這個時候A16就為0了。
那么有朋友就會有疑問,第一,為什么地址是0x6xxxxxxx而不是0x0xxxxxxx;第二,CS怎么接;第三,為什么Bit17對應A16?
先來看前兩個問題,大家找到STM32的FSMC手冊,在FSMC手冊里面,我們很容易找到,FSMC將0x60000000-0x6fffffff的地址用作NOR/PRAM(共256M地址范圍)。而這個存儲塊,又被分成了四部分,每部分64M地址范圍。當對其中某個存儲塊進行讀寫時,對應的NEx就會置低。這里,就解決了我們兩個問題,第一,LCD的操作時序,和NOR/PRAM是一樣的(為什么一樣自己找找NOR/PRAM的時序看看),所以我們選擇0x6xxxxxxx這個地址范圍(選擇這個地址范圍,操作這個地址時,FSMC就會呈現出NOR/PRAM的時序)。第二,我們可以將NEx連接到LCD的CS,只要我們操作的地址是第一個存儲塊內即可(即0-0x3ffffff地址范圍)。
第三個問題再來看一看FSMC手冊關於存儲器字寬的描述,我們發現,當外部存儲器是16位時,硬件管腳A0-A24表示的是地址線A1-A25的值,所以我們要位移一下,Bit17的值,實際會被反應到A16這根IO來。關於數據寬度及位移的問題,初學的朋友可能會比較疑惑,當你接觸了多NOR/PRAM這樣的器件后,你會發現,很多芯片的總線,都是這樣設計的,為的是節省地址線。
PS:看到這里還是不明白,於是查了下手冊,有這么一個圖,大意是若外部設備的地址寬度是8位的,則HADDR[25:0]與STM32的CPU引腳FSMC_A[25:0]一一對應,最大可以訪問64M字節的空間。若外部設備的地址寬度是16位的,則是HADDR[25:1]與STM32的CPU引腳FSMC_A[24:0]一一對應。
HADDR |
FSMC_A |
25 · · 1 |
24 · · 0 |
就是上圖這個意思,這里的HADDR是需要轉換到外部設備的內部AHB地址線,每個地址對應一個字節單元。所以我的理解是:上面出現的地址0x60020000,是工作於CPU內部的地址,體現在HADDR上面是17腳,但是轉換到硬件引腳上就是FSMC_A16腳了(因為從上圖看來,地址正好是差1,雖然HADDR的地址0並沒有,但是可以虛構一下,就當它有了,呵呵),與液晶屏的RS腳相連。
——純粹個人瞎理解,老是感覺再看的時候跟新的一樣,還是用自己的話記錄一下吧
那么上面就完全解決了LCD驅動如何接FSMC的問題,如果讀者沒懂,建議將上述文字抄上一遍,FSMC手冊對應NOR/PRAM的章節抄一遍。還沒懂,就繼續抄一遍,抄到懂為止。
雖然上述只是針對LCD講解了FSMC,但是其實對NOR和外部RAM的操作也是類似的,只不過多了些地址線來尋址而已。--By YuanYin.