KNN也能實現數字識別但需要保留所有的訓練樣本,支持向量機只需要保留支持向量就可以達到類似的效果
支持向量機本質上是一個二分類器
代碼如下:
# -*- coding: utf-8 -*- #完整版的支持向量機 有核函數 from numpy import * from time import sleep #導入數據集 def loadDataSet(fileName): dataMat = [] labelMat = [] fr = open(fileName) for line in fr.readlines():#按行讀取 lineArr = line.strip().split('\t')#對每行分割並剔除空格 dataMat.append([float(lineArr[0]), float(lineArr[1])]) labelMat.append(float(lineArr[2])) return dataMat,labelMat #隨機選擇一個i!=j的數 def selectJrand(i,m): j=i #we want to select any J not equal to i while (j==i): j = int(random.uniform(0,m)) return j #數值太大太小時調整 def clipAlpha(aj,H,L): if aj > H: aj = H if L > aj: aj = L return aj #簡化的SMO算法 #輸入參數為(數據集,標簽集,常數C,容錯率,最大循環次數) def smoSimple(dataMatIn, classLabels, C, toler, maxIter): dataMatrix = mat(dataMatIn); #轉換為NumPy矩陣類型 labelMat = mat(classLabels).transpose()#轉換為NumPy矩陣類型,並求轉置 b = 0; m,n = shape(dataMatrix) #求矩陣的大小 alphas = mat(zeros((m,1))) #生成一個0矩陣 列矩陣 iter = 0 #迭代次數 while (iter < maxIter): alphaPairsChanged = 0 #用於記錄alpha是否已經優化 for i in range(m): fXi = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[i,:].T)) + b #fXi是要預測的類別 Ei = fXi - float(labelMat[i])#if checks if an example violates KKT conditions #計算誤差 if ((labelMat[i]*Ei < -toler) and (alphas[i] < C)) or ((labelMat[i]*Ei > toler) and (alphas[i] > 0)): #如果可以被優化 j = selectJrand(i,m)#隨機選擇一個數 fXj = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[j,:].T)) + b #fXj是要預測的類別 multiply表示各元素相乘,T是轉置 Ej = fXj - float(labelMat[j]) #計算誤差 alphaIold = alphas[i].copy()#python中的copy方法 alphaJold = alphas[j].copy(); if (labelMat[i] != labelMat[j]): L = max(0, alphas[j] - alphas[i]) H = min(C, C + alphas[j] - alphas[i]) else: L = max(0, alphas[j] + alphas[i] - C) H = min(C, alphas[j] + alphas[i]) if L==H: print ("L==H"); continue eta = 2.0 * dataMatrix[i,:]*dataMatrix[j,:].T - dataMatrix[i,:]*dataMatrix[i,:].T - dataMatrix[j,:]*dataMatrix[j,:].T if eta >= 0: print ("eta>=0"); continue alphas[j] -= labelMat[j]*(Ei - Ej)/eta alphas[j] = clipAlpha(alphas[j],H,L) if (abs(alphas[j] - alphaJold) < 0.00001): print ("j not moving enough"); continue alphas[i] += labelMat[j]*labelMat[i]*(alphaJold - alphas[j])#更新i,與j的變化量相同但是方向相反 #給兩個alpha值設置常數項b b1 = b - Ei- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[i,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[i,:]*dataMatrix[j,:].T b2 = b - Ej- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[j,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[j,:]*dataMatrix[j,:].T if (0 < alphas[i]) and (C > alphas[i]): b = b1 elif (0 < alphas[j]) and (C > alphas[j]): b = b2 else: b = (b1 + b2)/2.0 alphaPairsChanged += 1 print ("iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)) if (alphaPairsChanged == 0): iter += 1 # alphaPairsChanged == 0 表示未更新 else: iter = 0 # alphaPairsChanged != 0 表示已更新 print ("iteration number: %d" % iter) return b,alphas #核轉換函數 #輸入參數為() #元組KTup給出了核函數的信息 元組的第一個參數描述核函數的類型 def kernelTrans(X, A, kTup): #calc the kernel or transform data to a higher dimensional space m,n = shape(X) K = mat(zeros((m,1))) if kTup[0]=='lin': #線性核 K = X * A.T elif kTup[0]=='rbf': #徑向基核 for j in range(m): #對矩陣的每個元素計算高斯函數的值 deltaRow = X[j,:] - A K[j] = deltaRow*deltaRow.T K = exp(K/(-1*kTup[1]**2)) #divide in NumPy is element-wise not matrix like Matlab else: #遇到無法識別的元組,程序拋出異常 raise NameError('Houston We Have a Problem That Kernel is not recognized') return K #建立一個數據結構來保存重要值 class optStruct: def __init__(self,dataMatIn, classLabels, C, toler, kTup): #使用參數來初始化結構 self.X = dataMatIn self.labelMat = classLabels self.C = C self.tol = toler self.m = shape(dataMatIn)[0] self.alphas = mat(zeros((self.m,1))) self.b = 0 self.eCache = mat(zeros((self.m,2))) #第一列是標志位第二列是實際的E值 self.K = mat(zeros((self.m,self.m))) for i in range(self.m): self.K[:,i] = kernelTrans(self.X, self.X[i,:], kTup) #計算E值並返回,是從SMO中提取出來的 def calcEk(oS, k): fXk = float(multiply(oS.alphas,oS.labelMat).T*oS.K[:,k] + oS.b) Ek = fXk - float(oS.labelMat[k]) return Ek #計算內循環的alpha def selectJ(i, oS, Ei): #this is the second choice -heurstic, and calcs Ej maxK = -1; maxDeltaE = 0; Ej = 0 oS.eCache[i] = [1,Ei] #set valid #choose the alpha that gives the maximum delta E validEcacheList = nonzero(oS.eCache[:,0].A)[0] if (len(validEcacheList)) > 1: for k in validEcacheList: #loop through valid Ecache values and find the one that maximizes delta E if k == i: continue #don't calc for i, waste of time Ek = calcEk(oS, k) deltaE = abs(Ei - Ek) if (deltaE > maxDeltaE):#改變最大的那個值 maxK = k; maxDeltaE = deltaE; Ej = Ek return maxK, Ej else: #in this case (first time around) we don't have any valid eCache values j = selectJrand(i, oS.m) Ej = calcEk(oS, j) return j, Ej #更新 def updateEk(oS, k):#after any alpha has changed update the new value in the cache Ek = calcEk(oS, k) oS.eCache[k] = [1,Ek] #與smoSimple類似但是有改進 def innerL(i, oS): Ei = calcEk(oS, i) if ((oS.labelMat[i]*Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i]*Ei > oS.tol) and (oS.alphas[i] > 0)): j,Ej = selectJ(i, oS, Ei) #this has been changed from selectJrand alphaIold = oS.alphas[i].copy(); alphaJold = oS.alphas[j].copy(); if (oS.labelMat[i] != oS.labelMat[j]): L = max(0, oS.alphas[j] - oS.alphas[i]) H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i]) else: L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C) H = min(oS.C, oS.alphas[j] + oS.alphas[i]) if L==H: print ("L==H"); return 0 eta = 2.0 * oS.K[i,j] - oS.K[i,i] - oS.K[j,j] #changed for kernel if eta >= 0: print ("eta>=0"); return 0 oS.alphas[j] -= oS.labelMat[j]*(Ei - Ej)/eta oS.alphas[j] = clipAlpha(oS.alphas[j],H,L) updateEk(oS, j) #added this for the Ecache if (abs(oS.alphas[j] - alphaJold) < 0.00001): print ("j not moving enough"); return 0 oS.alphas[i] += oS.labelMat[j]*oS.labelMat[i]*(alphaJold - oS.alphas[j])#update i by the same amount as j updateEk(oS, i) #added this for the Ecache #the update is in the oppostie direction b1 = oS.b - Ei- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,i] - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[i,j] b2 = oS.b - Ej- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,j]- oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[j,j] if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]): oS.b = b1 elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]): oS.b = b2 else: oS.b = (b1 + b2)/2.0 return 1 else: return 0 #有核函數的完整版的SMO算法 #輸入參數為(數據集,標簽集,常數C,容錯率,最大循環次數,核函數) def smoP(dataMatIn, classLabels, C, toler, maxIter,kTup=('lin', 0)): #full Platt SMO oS = optStruct(mat(dataMatIn),mat(classLabels).transpose(),C,toler, kTup) iter = 0 entireSet = True alphaPairsChanged = 0 while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)): alphaPairsChanged = 0 if entireSet: #go over all for i in range(oS.m): alphaPairsChanged += innerL(i,oS) print ("fullSet, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)) iter += 1 else:#go over non-bound (railed) alphas nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0] for i in nonBoundIs: alphaPairsChanged += innerL(i,oS) print ("non-bound, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)) iter += 1 if entireSet: entireSet = False #toggle entire set loop elif (alphaPairsChanged == 0): entireSet = True print ("iteration number: %d" % iter) return oS.b,oS.alphas #計算WS def calcWs(alphas,dataArr,classLabels): X = mat(dataArr); labelMat = mat(classLabels).transpose() m,n = shape(X) w = zeros((n,1)) for i in range(m): w += multiply(alphas[i]*labelMat[i],X[i,:].T) return w #測試徑向基核函數 def testRbf(k1=1.3): dataArr,labelArr = loadDataSet('testSetRBF.txt') b,alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, ('rbf', k1)) #C=200 important datMat=mat(dataArr); labelMat = mat(labelArr).transpose() svInd=nonzero(alphas.A>0)[0]#得到大於零的alpha值 從而得到支持向量 sVs=datMat[svInd] #get matrix of only support vectors labelSV = labelMat[svInd]; print ("there are %d Support Vectors" % shape(sVs)[0]) m,n = shape(datMat) errorCount = 0 for i in range(m):#利用核函數分類 kernelEval = kernelTrans(sVs,datMat[i,:],('rbf', k1)) predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b if sign(predict)!=sign(labelArr[i]): errorCount += 1 print ("the training error rate is: %f" % (float(errorCount)/m)) dataArr,labelArr = loadDataSet('testSetRBF2.txt') errorCount = 0 datMat=mat(dataArr); labelMat = mat(labelArr).transpose() m,n = shape(datMat) for i in range(m):#利用核函數測試 kernelEval = kernelTrans(sVs,datMat[i,:],('rbf', k1)) predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b if sign(predict)!=sign(labelArr[i]): errorCount += 1 print ("the test error rate is: %f" % (float(errorCount)/m)) #********以下為使用核函數支持向量機做手寫識別分類***********# #轉換為向量 def img2vector(filename): returnVect = zeros((1,1024)) fr = open(filename) for i in range(32): lineStr = fr.readline() for j in range(32): returnVect[0,32*i+j] = int(lineStr[j]) return returnVect #加載圖像 def loadImages(dirName): from os import listdir hwLabels = [] trainingFileList = listdir(dirName) #load the training set m = len(trainingFileList) trainingMat = zeros((m,1024)) for i in range(m): fileNameStr = trainingFileList[i] fileStr = fileNameStr.split('.')[0] #take off .txt classNumStr = int(fileStr.split('_')[0]) if classNumStr == 9: #二分類 hwLabels.append(-1) else: hwLabels.append(1) trainingMat[i,:] = img2vector('%s/%s' % (dirName, fileNameStr)) return trainingMat, hwLabels #和testRbf差不多也是一個測試函數 def testDigits(kTup=('rbf', 10)):#設置了默認的核函數 dataArr,labelArr = loadImages('trainingDigits') b,alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, kTup) datMat=mat(dataArr); labelMat = mat(labelArr).transpose() svInd=nonzero(alphas.A>0)[0] sVs=datMat[svInd] labelSV = labelMat[svInd]; print ("there are %d Support Vectors" % shape(sVs)[0]) m,n = shape(datMat) errorCount = 0 for i in range(m): kernelEval = kernelTrans(sVs,datMat[i,:],kTup) predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b if sign(predict)!=sign(labelArr[i]): errorCount += 1 print ("the training error rate is: %f" % (float(errorCount)/m)) dataArr,labelArr = loadImages('testDigits') errorCount = 0 datMat=mat(dataArr); labelMat = mat(labelArr).transpose() m,n = shape(datMat) for i in range(m): kernelEval = kernelTrans(sVs,datMat[i,:],kTup) predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b if sign(predict)!=sign(labelArr[i]): errorCount += 1 print ("the test error rate is: %f" % (float(errorCount)/m))
結果如下:
》import svm 》svm.testDigits(kTup=('rbf', 10)) there are 125 Support Vectors the training error rate is: 0.000000 the test error rate is: 0.005376
除此外要有公式推導
