numpy.where() 用法詳解


numpy.where (condition[, x, y])


numpy.where() 有兩種用法:

1. np.where(condition, x, y)

滿足條件(condition),輸出x,不滿足輸出y。


如果是一維數組,相當於[xv if c else yv for (c,xv,yv) in zip(condition,x,y)]

>>> aa = np.arange(10)
>>> np.where(aa,1,-1)
array([-1,  1,  1,  1,  1,  1,  1,  1,  1,  1])  # 0為False,所以第一個輸出-1
>>> np.where(aa > 5,1,-1)
array([-1, -1, -1, -1, -1, -1,  1,  1,  1,  1])

>>> np.where([[True,False], [True,True]],    # 官網上的例子
			 [[1,2], [3,4]],
             [[9,8], [7,6]])
array([[1, 8],
	   [3, 4]])

上面這個例子的條件為[[True,False], [True,False]],分別對應最后輸出結果的四個值。第一個值從[1,9]中選,因為條件為True,所以是選1。第二個值從[2,8]中選,因為條件為False,所以選8,后面以此類推。類似的問題可以再看個例子:

>>> a = 10
>>> np.where([[a > 5,a < 5], [a == 10,a == 7]],
             [["chosen","not chosen"], ["chosen","not chosen"]],
             [["not chosen","chosen"], ["not chosen","chosen"]])

array([['chosen', 'chosen'],
       ['chosen', 'chosen']], dtype='<U10')



2. np.where(condition)

只有條件 (condition),沒有x和y,則輸出滿足條件 (即非0) 元素的坐標 (等價於numpy.nonzero)。這里的坐標以tuple的形式給出,通常原數組有多少維,輸出的tuple中就包含幾個數組,分別對應符合條件元素的各維坐標。

>>> a = np.array([2,4,6,8,10])
>>> np.where(a > 5)				# 返回索引
(array([2, 3, 4]),)   
>>> a[np.where(a > 5)]  			# 等價於 a[a>5]
array([ 6,  8, 10])

>>> np.where([[0, 1], [1, 0]])
(array([0, 1]), array([1, 0]))

上面這個例子條件中[[0,1],[1,0]]的真值為兩個1,各自的第一維坐標為[0,1],第二維坐標為[1,0]


下面看個復雜點的例子:

>>> a = np.arange(27).reshape(3,3,3)
>>> a
array([[[ 0,  1,  2],
        [ 3,  4,  5],
        [ 6,  7,  8]],

       [[ 9, 10, 11],
        [12, 13, 14],
        [15, 16, 17]],

       [[18, 19, 20],
        [21, 22, 23],
        [24, 25, 26]]])

>>> np.where(a > 5)
(array([0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2]),
 array([2, 2, 2, 0, 0, 0, 1, 1, 1, 2, 2, 2, 0, 0, 0, 1, 1, 1, 2, 2, 2]),
 array([0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2]))


# 符合條件的元素為
	   [ 6,  7,  8]],

      [[ 9, 10, 11],
       [12, 13, 14],
       [15, 16, 17]],

      [[18, 19, 20],
       [21, 22, 23],
       [24, 25, 26]]]

所以np.where會輸出每個元素的對應的坐標,因為原數組有三維,所以tuple中有三個數組。



/


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM