U_Net原理及tensorflow的實現


Unet——用於圖像邊緣檢測,是FCN的改進

如上圖是UNET的架構圖,可以發現器輸入圖像和輸出圖像不一致,如果我們需要輸入圖像和輸出圖像一致時,在卷積時,使用padding=“SAME”即可,然后再邊緣檢測時,就相當與像素級別的二分類問題,用交叉熵做loss函數即可。但位置檢測常用IOU作為loss函數。

 

個人覺得UNET的優點:

1.Unet的去除了全鏈接層,可以接受圖像大小不一致的輸入(在訓練時,同一個批圖像大小可以不一致嗎?)

2.Unet的最重要的是,他還保留了位置信息,講低級特征圖和編碼部分對應連接,保留位置信息,所以可以用於圖像生成、圖像的語義分割和GAN相結合等等,和膠囊網絡的比較?

3.U-Net: Convolutional Networks for Biomedical Image Segmentation,是邊緣檢測的論文,邊緣檢測這類問題,標簽數據是非常少且昂貴的,而要訓練deep network需要很多數據,所以應該應用用了圖像鏡像,圖像扭曲,仿射變換等圖像增強技術。

 tensorflow的實現

#coding:utf-8
import tensorflow as tf
import argparse
import Augmentor
import os
import glob
from PIL import Image
import numpy as np
from data import *

parser = argparse.ArgumentParser()
parser.add_argument('--image_size', type=int, default=512)
parser.add_argument('--batch_size', type=int, default=2)
parser.add_argument('--n_epoch', type=int, default=2000)
param = parser.parse_args()
def conv_pool(input,filters_1,filters_2,kernel_size,name = 'conv2d'):
   with tf.variable_scope(name):
        conv_1 = tf.layers.conv2d(inputs=input,filters= filters_1,kernel_size=kernel_size,padding="same",
                                  activation=tf.nn.relu,kernel_initializer=tf.contrib.layers.variance_scaling_initializer(),name = "conv_1")
        conv_2 = tf.layers.conv2d(inputs=conv_1,filters= filters_2,kernel_size=kernel_size,padding="same",
                                  activation=tf.nn.relu,kernel_initializer=tf.contrib.layers.variance_scaling_initializer(),name = "conv_2")
        pool = tf.layers.max_pooling2d(inputs = conv_2,pool_size = [2,2],strides = 2,padding = "same",name = 'pool')
        return conv_2,pool

def upconv_concat(inputA,inputB,filters,kernel_size,name="upconv"):
     with tf.variable_scope(name):
         up_conv = tf.layers.conv2d_transpose(inputs = inputA,filters = filters,kernel_size = kernel_size,strides = (2,2),padding ="same",
                                        activation=tf.nn.relu,kernel_initializer=tf.contrib.layers.variance_scaling_initializer(),name = 'up_conv')
         return tf.concat([up_conv, inputB], axis=-1, name="concat")
        

class U_net(object):
    def __init__(self):
        self.name = "U_NET"
    def __call__(self,x,reuse = False):
        with tf.variable_scope(self.name) as scope:
            if reuse:
                scope.reuse_variables()
            conv_1,pool_1 = conv_pool(x,64,64,[3,3],name="conv_pool_1")
            conv_2,pool_2 = conv_pool(pool_1,128,128,[3,3],name="conv_pool_2")
            conv_3,pool_3 = conv_pool(pool_2,256,256,[3,3],name="conv_pool_3")
            conv_4,pool_4 = conv_pool(pool_3,512,512,[3,3],name="conv_pool_4")
            conv_5,pool_5 = conv_pool(pool_4,1024,1024,[3,3],name="conv_pool_5")
            
            upconv_6 = upconv_concat(conv_5,conv_4,512,[2,2],name="upconv_6")
            conv_6,pool_6 = conv_pool(upconv_6,512,512,[3,3],name="conv_pool_6")
            
            upconv_7 = upconv_concat(conv_6,conv_3,256,[2,2],name="upconv_7")
            conv_7,pool_7 = conv_pool(upconv_7,256,256,[3,3],name="conv_pool_7")
            
            upconv_8 = upconv_concat(conv_7,conv_2,128,[2,2],name="upconv_8")
            conv_8,pool_8 = conv_pool(upconv_8,128,128,[3,3],name="conv_pool_8")
            
            upconv_9 = upconv_concat(conv_8,conv_1,64,[2,2],name="upconv_9")
            conv_9,pool_9 = conv_pool(upconv_9,64,64,[3,3],name="conv_pool_9")

            conv_10 = tf.layers.conv2d(inputs=conv_9,filters= 2,kernel_size=[3,3],padding="same",
                                  activation=tf.nn.relu,kernel_initializer=tf.contrib.layers.variance_scaling_initializer(),name = "conv_10")
            output_image = tf.layers.conv2d(inputs=conv_10,filters= 1,kernel_size=[1,1],padding="same",
                                  activation=tf.nn.sigmoid,kernel_initializer=tf.contrib.layers.variance_scaling_initializer(),name = "output_image")
            
            return output_image
            
    @property
    def vars(self):
        return tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=self.name)        
class U_net_train(object):
    def __init__(self,unet,data,name = "unet_train"):
        self.name = name
        self.unet = unet
        self.imagesize = param.image_size
        self.train_data = tf.placeholder(tf.float32, shape=[None, self.imagesize, self.imagesize, 1], name = "train_data")
        tf.summary.image("train_image",self.train_data,2)
        self.train_label = tf.placeholder(tf.float32, shape=[None, self.imagesize, self.imagesize, 1], name = "train_label")
        tf.summary.image("train_label",self.train_label,2)
        self.data = data
        self.predict_label = self.unet(self.train_data)
        tf.summary.image("output_image",self.predict_label,2)
        with tf.name_scope('loss'):
            self.loss = - tf.reduce_mean(self.train_label * tf.log(self.predict_label + 1e-8) + (1-self.train_label) * tf.log(1 - self.predict_label + 1e-8 ))
            tf.summary.scalar('loss',self.loss)
        #self.loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels = self.train_label,logits = self.predict_label,name = 'loss'))
        with tf.name_scope("train"):
            self.optimizer = tf.train.AdamOptimizer(learning_rate=0.0001).minimize(self.loss)
        self.saver = tf.train.Saver()
        gpu_options = tf.GPUOptions(allow_growth = True)
        with tf.name_scope('init_sessoin'): 
            self.sess = tf.InteractiveSession(config=tf.ConfigProto(gpu_options=gpu_options))
        #self.sess = tf.Session()
        self.merged = tf.summary.merge_all()
    def train(self, sample_dir, restore = False,ckpt_dir='ckpt'):
        if restore:
            print("hhhh")
            self.saver.restore(self.sess,"ckpt/unet.ckpt")
        self.sess.run(tf.global_variables_initializer())
        writer = tf.summary.FileWriter("./logs_1/", self.sess.graph)
        for epoch in range(param.n_epoch):
            images, labels = self.data(param.batch_size)
            loss,_,rs = self.sess.run([self.loss,self.optimizer,self.merged],feed_dict={self.train_data: images, self.train_label: labels})
            writer.add_summary(rs, epoch)
            if epoch % 50 == 1:
                print('Iter: {}; loss: {:.10}'.format(epoch, loss))
            if (epoch + 21) % 100 == 1:
                self.saver.save(self.sess, os.path.join(ckpt_dir, "unet.ckpt"))
                self.test()
        self.saver.save(self.sess, os.path.join(ckpt_dir, "unet.ckpt"))
    def test(self):
        #test_image = glob.glob("./data/test/*.tif")
        test_images = np.zeros((1,512,512,1))
        for i in range(1):
            test_images[i,:,:,:] = np.array(Image.open("./data/test/"+str(i)+".tif")).reshape(512,512,1)/255.
        #saver = tf.train.Saver()
        #gpu_options = tf.GPUOptions(allow_growth=True)
        #self.sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) 
        self.saver.restore(self.sess,"ckpt/unet.ckpt")
        #test_labels = self.unet(test_images,reuse = True)
        test_labels = self.sess.run(self.predict_label,feed_dict={self.train_data: test_images})
        for i in range(1):
            image = test_labels[i,:,:,:] * 255.
            testimage = image.reshape((512,512))
            testimage =testimage.astype(np.uint8)
            im = Image.fromarray(testimage)
            im.save("./data/test/label"+str(i)+".tif")
if __name__ == '__main__':

    # constraint GPU
    #os.environ['CUDA_VISIBLE_DEVICES'] = '0'
  
    unet = U_net()
    data = DATA()
    u_train = U_net_train(unet,data)
    u_train.train("./data/model/",restore=False)
    u_train.test()
View Code

 

 效果圖

 

踩過的坑,原論文中網絡之后一層變成2個通道的沒加,直接加上了輸出通道效果一直不好,個人以為可能特征太多,沒有轉化為高級特征,所以造成不收斂效果不好的問題。

因tensorboard的圖太大,這里就截個一個tensorboard的局部圖:

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM