tensorflow函數解析:Session.run和Tensor.eval
原問題鏈接:
譯:
問題:
tensorflow有兩種方式:Session.run和 Tensor.eval,這兩者的區別在哪?
答:
如果你有一個Tensor t,在使用t.eval()時,等價於:tf.get_default_session().run(t).
舉例:
t = tf.constant(42.0) sess = tf.Session() with sess.as_default(): # or `with sess:` to close on exit assert sess is tf.get_default_session() assert t.eval() == sess.run(t)
這其中最主要的區別就在於你可以使用sess.run()在同一步獲取多個tensor中的值,
例如:
t = tf.constant(42.0) u = tf.constant(37.0) tu = tf.mul(t, u) ut = tf.mul(u, t) with sess.as_default(): tu.eval() # runs one step ut.eval() # runs one step sess.run([tu, ut]) # evaluates both tensors in a single step
注意到:每次使用 eval 和 run時,都會執行整個計算圖,為了獲取計算的結果,將它分配給tf.Variable,然后獲取。
原文如下:
Question:
TensorFlow has two ways to evaluate part of graph: Session.run on a list of variables and Tensor.eval. Is there a difference between these two?
Answer:
If you have a Tensor t, calling t.eval() is equivalent to calling tf.get_default_session().run(t).
You can make a session the default as follows:
t = tf.constant(42.0) sess = tf.Session() with sess.as_default(): # or `with sess:` to close on exit assert sess is tf.get_default_session() assert t.eval() == sess.run(t)
The most important difference is that you can use sess.run() to fetch the values of many tensors in the same step:
t = tf.constant(42.0) u = tf.constant(37.0) tu = tf.mul(t, u) ut = tf.mul(u, t) with sess.as_default(): tu.eval() # runs one step ut.eval() # runs one step sess.run([tu, ut]) # evaluates both tensors in a single step
Note that each call to eval and run will execute the whole graph from scratch. To cache the result of a computation, assign it to a tf.Variable.
