機器學習領域主要術語的英文表達


(1)

函數關系:functional relation

正相關:positive correlation

負相關:negative correlation

相關系數:correlation efficient

一元線性回歸:simple linear regression

多元線性回歸:multiple linear regression

參數:parameter

參數估計:parameter estimation

截距:intercept

斜率:slope

誤差:error

殘差:residual

擬合:fit

最小二乘法:method of least squares

殘差平方和:residual sum of squares (RSS)

創建向量:create a vector

回歸系數:regression coefficient

建立線性模型:create a linear model

內推插值:interpolate

外推歸納:extrapolate

回歸診斷:regression diagnostics

離群值:outlier

多重共線性:multicollinearity

廣義線性回歸模型:generalized linear regression model

啞變量(虛擬變量):dummy variable

logistic回歸:logistic regression

非線性回歸:nonlinear regression

 

(2)

頻繁模式挖掘:frequent pattern mining

無偏估計:unbiased estimation

最小二乘法:least square methods (LSM)

矩陣:matrix

系數:coefficient

截距項:intercept

隨機誤差:random error

廣義逆:generalized inverse

有偏估計:biased estimation

嶺回歸:ridge regression

等價模型:equivalence model

懲罰模型:penalty function

估計族:class of estimators

嶺參數:ridge parameter

嶺跡圖:ridge trace

方差擴大因子:variance inflation factor (VIF)

LASSO:least absolute shrinkage and selection operator

最小角回歸:least angle regression (LAR)

 

(3)

主成分分析:principal component analysis

降維:dimension reduction

特征選擇:feature selection

特征提取:feature extraction

協方差矩陣:covariance matrix

對角化:diagonalization

因子分析:factor analysis

因子載荷矩陣:factor loading matrix

特殊方差矩陣:special variance matrix

極大似然法:maximum likelihood method

正交旋轉:orthorgonal rotation

因子得分:factor score

 

(4)

分類模型:classification model

線性判別法:linear discriminant analysis

線性分類器:Linear Classifier

距離判別法:distance discriminant method

k-NN algorithm(k-最近鄰算法):k-Nearest Neighbors algorithm (or k-NN for short)

朴素貝葉斯分類器:Naïve Bayes Classifier

決策樹:decision tree

支持向量機:support vector machines (SVM)

神經網絡:neural network

文本挖掘:text mining

貝葉斯信念網絡:Bayesian belief network

條件概率:conditional probability

先驗概率:prior probability

后驗概率:posterior probability

條件概率表:conditional probability table (CPT)

貝葉斯推理:Bayesian reasoning

 

(5)

決策樹:decision tree

ID3算法(迭代二叉樹3代):iterative dichotomiser 3

分類與回歸樹:classification and regression tree(CART)

信息增益:information gain (IG)

分裂屬性:splitting attribute

剪枝:pruning

代價復雜度:cost-complexity

組合算法:combinatorial algorithm

裝袋算法:bagging algorithm

提升算法:boosting algorithm

AdaBoost(Adaptive Boosting:

自適應增強)算法:Adaboost algorithm

隨機森林算法:random forest algorithm

 

(6)

支持向量機:support vector machines (SVM)

線性可分:linearly-separable

最優分離平面:optimal separating plane

決策邊界:decision boundary

最大邊緣超平面:maximum marginal hyperplane (MMH)

凸優化問題:convex optimization problem

拉格朗日乘子法:lagrange multiplier method

KKT條件:Karush-Kuhn-Tucker conditions

對偶:duality

松弛變量:slack variable

懲罰函數:penalty function

SMO算法(序列最小優化算法):sequential minimal optimization

高維空間:high dimension space

維度災難:curse of dimensionality

核函數:kernel function

高斯徑向基函數:Gaussian radial basis function

Mercer定理:Mercer's theorem

 

(7)

人工神經網絡:artificial neural network

神經元,神經細胞:neuron

樹突:dendrite

軸突:axon

細胞體:cell body

突觸:synapsis

單層感知器:single-layer perceptron

線性神經網絡:linear neural network

BP神經網絡:BP Neural Network

輸入節點:input node

輸出節點:output node

權向量:weight vector

偏置因子(偏因):bias factor

激活函數:activation function

自學習算法:self-learning algorithm

學習率:learning rate

權重:weight

偏移:bias

偏置值:bias value

平均絕對誤差:mean absolute error

均方誤差:mean square error

誤差平方和:square error sum

拓撲:topology

前饋型網絡:feedforward networks

反饋型網絡:feedback network

學習規則:learning rule

線性神經網絡:linear neural network

梯度下降法:gradient descent algorithm

 

(8)

深度學習:deep learning

有監督學習:supervised learning

無監督學習:unsupervised learning

半監督學習:semi-supervised learning

BP神經網絡:BP Neural Network

誤差反向傳播算法:error back-propagation algorithm

多層前饋神經網絡:multilayer feed-forward neural network

最速下降法:method of steepest descent

圖像壓縮:image compression

Hopfield神經網絡:Hopfield neural network

光學字符識別:Optical Character Recognition (OCR)

PCA(Principal Component Analysis)神經網絡:PCA Neural Network

神經網絡芯片:neural network chip

通用逼近器:universal approximator

徑向基函數神經網絡:radial basis function neural network (RBFNN)

正則化RBF神經網絡:normalized RBF neural network (NRBFNN))

廣義RBF神經網絡:Generalized RBF neural network

概率神經網絡:probabilistic neural network

貝葉斯信念網絡:Bayesian belief network

 

(9)

貝葉斯信念網絡:Bayesian belief network

梯度計算:gradient computation

權重更新:weight updating

聚類:clustering

孤立點(離群值、異常值):outlier

距離:distance

絕對值距離:absolute value distance

歐氏(歐幾里得)距離:Euclidean distance

閔可夫斯基:Minkowski distance

切比雪夫距離:Chebyshev distance

馬氏(馬哈拉諾比斯)距離:Mahalanobis distance

蘭氏距離:Lance and Williams distance / Canberra Distance

離散變量:discrete variable

數據中心化與標准化:data centralization and standardization

極差(全距):range

相似系數:similarity coefficient

夾角余弦:included angle cosine

相關系數:correlation coefficient

凝聚聚類算法:aggregate clustering algorithm

層次聚類法:hierarchical clustering

動態聚類:dynamic clustering

K-means 算法:K-means algorithm

K中心聚類法:k-medoids clustering

圍繞中心點的划分算法:Partitioning Around Medoids (PAM)

CLARA 算法:CLARA algorithm (Clustering for LARge Applications)

基於密度的聚類:density-based clustering

DBSCAN 聚類算法:DBSCAN (A Density-Based Spatial Clustering of Application) clustering algorithm

基於網格的聚類算法:Grid-Based Clustering Algorithm

CLIQUE算法:CLIQUE (CLustering In QUEst) Algorithm

稠密單元:dense unit

簇的裝配:assembling of cluster

最小覆蓋:minimum covering

貪心算法:greedy algorithm

 

(10)

霍普金斯統計量:Hopkins statistic

簇數制定:determining the number of clusters

肘方法:elbow method

偽F統計量:pseudo f-statistics (PSF)

偽T平方統計量:Pseudo-T2 Statistic (PST2):

B-cubed聚類評分:B-cubed cluster scoring

輪廓系數:silhouette coefficient

模糊聚類:fuzzy clustering

誤差平方和:square sum of error (SSE)

基於概率模型的聚類:probabilistic-model-based clustering

概率聚類:probabilistic clustering

最大似然估計:maximum likelihood estimation

最大期望算法:expectation-maximization (EM) algorithm

混合模型:hybrid model

離群值檢測:outlier detection

基於直方圖的離群值檢測:histogram-based outlier detection

基於鄰域的離群值檢測:neighborhood-based outlier detection

基於網格的離群值檢測:grid-based outlier detection

基於聚類的離群值檢測:clustering-based outlier detection


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM