(1)
函數關系:functional relation
正相關:positive correlation
負相關:negative correlation
相關系數:correlation efficient
一元線性回歸:simple linear regression
多元線性回歸:multiple linear regression
參數:parameter
參數估計:parameter estimation
截距:intercept
斜率:slope
誤差:error
殘差:residual
擬合:fit
最小二乘法:method of least squares
殘差平方和:residual sum of squares (RSS)
創建向量:create a vector
回歸系數:regression coefficient
建立線性模型:create a linear model
內推插值:interpolate
外推歸納:extrapolate
回歸診斷:regression diagnostics
離群值:outlier
多重共線性:multicollinearity
廣義線性回歸模型:generalized linear regression model
啞變量(虛擬變量):dummy variable
logistic回歸:logistic regression
非線性回歸:nonlinear regression
(2)
頻繁模式挖掘:frequent pattern mining
無偏估計:unbiased estimation
最小二乘法:least square methods (LSM)
矩陣:matrix
系數:coefficient
截距項:intercept
隨機誤差:random error
廣義逆:generalized inverse
有偏估計:biased estimation
嶺回歸:ridge regression
等價模型:equivalence model
懲罰模型:penalty function
估計族:class of estimators
嶺參數:ridge parameter
嶺跡圖:ridge trace
方差擴大因子:variance inflation factor (VIF)
LASSO:least absolute shrinkage and selection operator
最小角回歸:least angle regression (LAR)
(3)
主成分分析:principal component analysis
降維:dimension reduction
特征選擇:feature selection
特征提取:feature extraction
協方差矩陣:covariance matrix
對角化:diagonalization
因子分析:factor analysis
因子載荷矩陣:factor loading matrix
特殊方差矩陣:special variance matrix
極大似然法:maximum likelihood method
正交旋轉:orthorgonal rotation
因子得分:factor score
(4)
分類模型:classification model
線性判別法:linear discriminant analysis
線性分類器:Linear Classifier
距離判別法:distance discriminant method
k-NN algorithm(k-最近鄰算法):k-Nearest Neighbors algorithm (or k-NN for short)
朴素貝葉斯分類器:Naïve Bayes Classifier
決策樹:decision tree
支持向量機:support vector machines (SVM)
神經網絡:neural network
文本挖掘:text mining
貝葉斯信念網絡:Bayesian belief network
條件概率:conditional probability
先驗概率:prior probability
后驗概率:posterior probability
條件概率表:conditional probability table (CPT)
貝葉斯推理:Bayesian reasoning
(5)
決策樹:decision tree
ID3算法(迭代二叉樹3代):iterative dichotomiser 3
分類與回歸樹:classification and regression tree(CART)
信息增益:information gain (IG)
分裂屬性:splitting attribute
剪枝:pruning
代價復雜度:cost-complexity
組合算法:combinatorial algorithm
裝袋算法:bagging algorithm
提升算法:boosting algorithm
AdaBoost(Adaptive Boosting:
自適應增強)算法:Adaboost algorithm
隨機森林算法:random forest algorithm
(6)
支持向量機:support vector machines (SVM)
線性可分:linearly-separable
最優分離平面:optimal separating plane
決策邊界:decision boundary
最大邊緣超平面:maximum marginal hyperplane (MMH)
凸優化問題:convex optimization problem
拉格朗日乘子法:lagrange multiplier method
KKT條件:Karush-Kuhn-Tucker conditions
對偶:duality
松弛變量:slack variable
懲罰函數:penalty function
SMO算法(序列最小優化算法):sequential minimal optimization
高維空間:high dimension space
維度災難:curse of dimensionality
核函數:kernel function
高斯徑向基函數:Gaussian radial basis function
Mercer定理:Mercer's theorem
(7)
人工神經網絡:artificial neural network
神經元,神經細胞:neuron
樹突:dendrite
軸突:axon
細胞體:cell body
突觸:synapsis
單層感知器:single-layer perceptron
線性神經網絡:linear neural network
BP神經網絡:BP Neural Network
輸入節點:input node
輸出節點:output node
權向量:weight vector
偏置因子(偏因):bias factor
激活函數:activation function
自學習算法:self-learning algorithm
學習率:learning rate
權重:weight
偏移:bias
偏置值:bias value
平均絕對誤差:mean absolute error
均方誤差:mean square error
誤差平方和:square error sum
拓撲:topology
前饋型網絡:feedforward networks
反饋型網絡:feedback network
學習規則:learning rule
線性神經網絡:linear neural network
梯度下降法:gradient descent algorithm
(8)
深度學習:deep learning
有監督學習:supervised learning
無監督學習:unsupervised learning
半監督學習:semi-supervised learning
BP神經網絡:BP Neural Network
誤差反向傳播算法:error back-propagation algorithm
多層前饋神經網絡:multilayer feed-forward neural network
最速下降法:method of steepest descent
圖像壓縮:image compression
Hopfield神經網絡:Hopfield neural network
光學字符識別:Optical Character Recognition (OCR)
PCA(Principal Component Analysis)神經網絡:PCA Neural Network
神經網絡芯片:neural network chip
通用逼近器:universal approximator
徑向基函數神經網絡:radial basis function neural network (RBFNN)
正則化RBF神經網絡:normalized RBF neural network (NRBFNN))
廣義RBF神經網絡:Generalized RBF neural network
概率神經網絡:probabilistic neural network
貝葉斯信念網絡:Bayesian belief network
(9)
貝葉斯信念網絡:Bayesian belief network
梯度計算:gradient computation
權重更新:weight updating
聚類:clustering
孤立點(離群值、異常值):outlier
距離:distance
絕對值距離:absolute value distance
歐氏(歐幾里得)距離:Euclidean distance
閔可夫斯基:Minkowski distance
切比雪夫距離:Chebyshev distance
馬氏(馬哈拉諾比斯)距離:Mahalanobis distance
蘭氏距離:Lance and Williams distance / Canberra Distance
離散變量:discrete variable
數據中心化與標准化:data centralization and standardization
極差(全距):range
相似系數:similarity coefficient
夾角余弦:included angle cosine
相關系數:correlation coefficient
凝聚聚類算法:aggregate clustering algorithm
層次聚類法:hierarchical clustering
動態聚類:dynamic clustering
K-means 算法:K-means algorithm
K中心聚類法:k-medoids clustering
圍繞中心點的划分算法:Partitioning Around Medoids (PAM)
CLARA 算法:CLARA algorithm (Clustering for LARge Applications)
基於密度的聚類:density-based clustering
DBSCAN 聚類算法:DBSCAN (A Density-Based Spatial Clustering of Application) clustering algorithm
基於網格的聚類算法:Grid-Based Clustering Algorithm
CLIQUE算法:CLIQUE (CLustering In QUEst) Algorithm
稠密單元:dense unit
簇的裝配:assembling of cluster
最小覆蓋:minimum covering
貪心算法:greedy algorithm
(10)
霍普金斯統計量:Hopkins statistic
簇數制定:determining the number of clusters
肘方法:elbow method
偽F統計量:pseudo f-statistics (PSF)
偽T平方統計量:Pseudo-T2 Statistic (PST2):
B-cubed聚類評分:B-cubed cluster scoring
輪廓系數:silhouette coefficient
模糊聚類:fuzzy clustering
誤差平方和:square sum of error (SSE)
基於概率模型的聚類:probabilistic-model-based clustering
概率聚類:probabilistic clustering
最大似然估計:maximum likelihood estimation
最大期望算法:expectation-maximization (EM) algorithm
混合模型:hybrid model
離群值檢測:outlier detection
基於直方圖的離群值檢測:histogram-based outlier detection
基於鄰域的離群值檢測:neighborhood-based outlier detection
基於網格的離群值檢測:grid-based outlier detection
基於聚類的離群值檢測:clustering-based outlier detection