what's the SQLAlchemy
SQLAlchemy 是一個基於 Python 實現的 ORM 框架。該框架建立在 DB API 之上,使用關系對象映射進行數據庫操作,簡言之便是:將類和對象轉換成 SQL,然后使用數據 API 執行 SQL 並獲取執行結果。
安裝
pip3 install sqlalchemy
SQLAlchemy 本身無法操作數據庫,其必須以來 pymsql 等第三方插件,Dialect用於和數據API進行交流,根據配置文件的不同調用不同的數據庫 API,從而實現對數據庫的操作,如:
MySQL-Python mysql+mysqldb://<user>:<password>@<host>[:<port>]/<dbname> pymysql mysql+pymysql://<username>:<password>@<host>/<dbname>[?<options>] MySQL-Connector mysql+mysqlconnector://<user>:<password>@<host>[:<port>]/<dbname> cx_Oracle oracle+cx_oracle://user:pass@host:port/dbname[?key=value&key=value...] 更多:http://docs.sqlalchemy.org/en/latest/dialects/index.html
使用SQLAlchemy
一、利用原生SQL語句進行操作
利用原生SQL語句進行是一種操作方式,但其實平常我們並不適用這種方式。

import time import threading import sqlalchemy from sqlalchemy import create_engine from sqlalchemy.engine.base import Engine engine = create_engine( "mysql+pymysql://root:123@127.0.0.1:3306/t1?charset=utf8", max_overflow=0, # 超過連接池大小外最多創建的連接 pool_size=5, # 連接池大小 pool_timeout=30, # 池中沒有線程最多等待的時間,否則報錯 pool_recycle=-1 # 多久之后對線程池中的線程進行一次連接的回收(重置) ) def task(arg): conn = engine.raw_connection() cursor = conn.cursor() cursor.execute( "select * from t1" ) result = cursor.fetchall() cursor.close() conn.close() for i in range(20): t = threading.Thread(target=task, args=(i,)) t.start()

#!/usr/bin/env python # -*- coding:utf-8 -*- import time import threading import sqlalchemy from sqlalchemy import create_engine from sqlalchemy.engine.base import Engine engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=0, pool_size=5) def task(arg): conn = engine.contextual_connect() with conn: cur = conn.execute( "select * from t1" ) result = cur.fetchall() print(result) for i in range(20): t = threading.Thread(target=task, args=(i,)) t.start()

#!/usr/bin/env python # -*- coding:utf-8 -*- import time import threading import sqlalchemy from sqlalchemy import create_engine from sqlalchemy.engine.base import Engine from sqlalchemy.engine.result import ResultProxy engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=0, pool_size=5) def task(arg): cur = engine.execute("select * from t1") result = cur.fetchall() cur.close() print(result) for i in range(20): t = threading.Thread(target=task, args=(i,)) t.start()

#!/usr/bin/env python # -*- coding:utf-8 -*- import time import threading from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index from sqlalchemy.orm import sessionmaker, relationship from sqlalchemy import create_engine from sqlalchemy.sql import text from sqlalchemy.engine.result import ResultProxy from db import Users, Hosts engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6", max_overflow=0, pool_size=5) Session = sessionmaker(bind=engine) session = Session() # 查詢 # cursor = session.execute('select * from users') # result = cursor.fetchall() # 添加 cursor = session.execute('insert into users(name) values(:value)',params={"value":'wupeiqi'}) session.commit() print(cursor.lastrowid) session.close()
二、ORM
flask是輕量級框架,所以本身並不具備ORM。想要操作數據庫就必須配合着SQLAlchemy來使用。
注:SQLAlchemy創建的表默認引擎不是InnoDB,若想改成InnoDB只要加一條參數即可
class User(BaseModel): __table_args__ = { 'mysql_engine': 'InnoDB', 'mysql_charset': 'utf8' }
創建單表:

#!/usr/bin/env python # -*- coding:utf-8 -*- import datetime from sqlalchemy import create_engine from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column, Integer, String, Text, ForeignKey, DateTime, UniqueConstraint, Index Base = declarative_base() class Users(Base): __tablename__ = 'users'#表名,與Django不同的是,flask必須寫 id = Column(Integer, primary_key=True) name = Column(String(32), index=True, nullable=False) # email = Column(String(32), unique=True) # ctime = Column(DateTime, default=datetime.datetime.now) # extra = Column(Text, nullable=True) __table_args__ = ( # UniqueConstraint('id', 'name', name='uix_id_name'), # Index('ix_id_name', 'name', 'email'), ) def init_db(): """ 根據類創建數據庫表 :return: """ engine = create_engine( "mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf8", max_overflow=0, # 超過連接池大小外最多創建的連接 pool_size=5, # 連接池大小 pool_timeout=30, # 池中沒有線程最多等待的時間,否則報錯 pool_recycle=-1 # 多久之后對線程池中的線程進行一次連接的回收(重置) ) Base.metadata.create_all(engine) def drop_db(): """ 根據類刪除數據庫表 :return: """ engine = create_engine( "mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf8", max_overflow=0, # 超過連接池大小外最多創建的連接 pool_size=5, # 連接池大小 pool_timeout=30, # 池中沒有線程最多等待的時間,否則報錯 pool_recycle=-1 # 多久之后對線程池中的線程進行一次連接的回收(重置) ) Base.metadata.drop_all(engine) if __name__ == '__main__': drop_db() init_db()
創建多表(包含FK和M2M兩種可能):

#!/usr/bin/env python # -*- coding:utf-8 -*- import datetime from sqlalchemy import create_engine from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column, Integer, String, Text, ForeignKey, DateTime, UniqueConstraint, Index from sqlalchemy.orm import relationship Base = declarative_base() # ##################### 單表示例 ######################### class Users(Base): __tablename__ = 'users' id = Column(Integer, primary_key=True) name = Column(String(32), index=True) age = Column(Integer, default=18) email = Column(String(32), unique=True) ctime = Column(DateTime, default=datetime.datetime.now) extra = Column(Text, nullable=True) __table_args__ = ( # UniqueConstraint('id', 'name', name='uix_id_name'), # Index('ix_id_name', 'name', 'extra'), ) class Hosts(Base): __tablename__ = 'hosts' id = Column(Integer, primary_key=True) name = Column(String(32), index=True) ctime = Column(DateTime, default=datetime.datetime.now) # ##################### 一對多示例 ######################### class Hobby(Base): __tablename__ = 'hobby' id = Column(Integer, primary_key=True) caption = Column(String(50), default='籃球') class Person(Base): __tablename__ = 'person' nid = Column(Integer, primary_key=True) name = Column(String(32), index=True, nullable=True) hobby_id = Column(Integer, ForeignKey("hobby.id"))#外鍵 # 與生成表結構無關,僅用於查詢方便,backref相當於Django的related_name hobby = relationship("Hobby", backref='pers') # ##################### 多對多示例 ######################### #與Django不同,flask中多對多的第三張表必須自己手動創建 class Server2Group(Base): __tablename__ = 'server2group' id = Column(Integer, primary_key=True, autoincrement=True) server_id = Column(Integer, ForeignKey('server.id')) group_id = Column(Integer, ForeignKey('group.id')) class Group(Base): __tablename__ = 'group' id = Column(Integer, primary_key=True) name = Column(String(64), unique=True, nullable=False) # 與生成表結構無關,僅用於查詢方便,secondary指的是第三張表的表名 servers = relationship('Server', secondary='server2group', backref='groups') class Server(Base): __tablename__ = 'server' id = Column(Integer, primary_key=True, autoincrement=True) hostname = Column(String(64), unique=True, nullable=False) def init_db(): """ 根據類創建數據庫表 :return: """ engine = create_engine( "mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf8", max_overflow=0, # 超過連接池大小外最多創建的連接 pool_size=5, # 連接池大小 pool_timeout=30, # 池中沒有線程最多等待的時間,否則報錯 pool_recycle=-1 # 多久之后對線程池中的線程進行一次連接的回收(重置) ) Base.metadata.create_all(engine) def drop_db(): """ 根據類刪除數據庫表 :return: """ engine = create_engine( "mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf8", max_overflow=0, # 超過連接池大小外最多創建的連接 pool_size=5, # 連接池大小 pool_timeout=30, # 池中沒有線程最多等待的時間,否則報錯 pool_recycle=-1 # 多久之后對線程池中的線程進行一次連接的回收(重置) ) Base.metadata.drop_all(engine) if __name__ == '__main__': drop_db() init_db()
基本增刪改查示例:

#!/usr/bin/env python # -*- coding:utf-8 -*- import time import threading from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index from sqlalchemy.orm import sessionmaker, relationship from sqlalchemy import create_engine from sqlalchemy.sql import text from db import Users, Hosts engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6", max_overflow=0, pool_size=5) Session = sessionmaker(bind=engine) session = Session() # ################ 添加 ################ """ obj1 = Users(name="wupeiqi")#創建對象 session.add(obj1)#加入內存 #批量創建 session.add_all([ Users(name="wupeiqi"), Users(name="alex"), Hosts(name="c1.com"), ]) session.commit()#提交(不執行這步,上述操作都無效) """ # ################ 刪除 ################ """ session.query(Users).filter(Users.id > 2).delete()#刪除操作 session.commit()#提交 """ # ################ 修改 ################ """ #synchronize_session是用來說明相加時時數字類型的相加還是字符串類型的相加 session.query(Users).filter(Users.id > 0).update({"name" : "099"}) session.query(Users).filter(Users.id > 0).update({Users.name: Users.name + "099"}, synchronize_session=False) session.query(Users).filter(Users.id > 0).update({"age": Users.age + 1}, synchronize_session="evaluate") session.commit()#提交 """ # ################ 查詢 ################ """ #filter_by的后面的括號直接寫字段=條件,類似Django。filter則需寫表名.字段==條件 r1 = session.query(Users).all() r2 = session.query(Users.name.label('xx'), Users.age).all() r3 = session.query(Users).filter(Users.name == "alex").all() r4 = session.query(Users).filter_by(name='alex').all() r5 = session.query(Users).filter_by(name='alex').first() #占位符操作示例 r6 = session.query(Users).filter(text("id<:value and name=:name")).params(value=224, name='fred').order_by(Users.id).all() r7 = session.query(Users).from_statement(text("SELECT * FROM users where name=:name")).params(name='ed').all() """ session.close()#操作commit后,需將鏈接關閉
其他常用的查詢操作(條件查詢、模糊查詢、排序、分組、連表、組合)

# 條件 ret = session.query(Users).filter_by(name='alex').all() ret = session.query(Users).filter(Users.id > 1, Users.name == 'eric').all() ret = session.query(Users).filter(Users.id.between(1, 3), Users.name == 'eric').all() ret = session.query(Users).filter(Users.id.in_([1,3,4])).all() ret = session.query(Users).filter(~Users.id.in_([1,3,4])).all() ret = session.query(Users).filter(Users.id.in_(session.query(Users.id).filter_by(name='eric'))).all() from sqlalchemy import and_, or_ ret = session.query(Users).filter(and_(Users.id > 3, Users.name == 'eric')).all() ret = session.query(Users).filter(or_(Users.id < 2, Users.name == 'eric')).all() ret = session.query(Users).filter( or_( Users.id < 2, and_(Users.name == 'eric', Users.id > 3), Users.extra != "" )).all() # 通配符 ret = session.query(Users).filter(Users.name.like('e%')).all() ret = session.query(Users).filter(~Users.name.like('e%')).all() # 限制 ret = session.query(Users)[1:2] # 排序 ret = session.query(Users).order_by(Users.name.desc()).all() ret = session.query(Users).order_by(Users.name.desc(), Users.id.asc()).all() # 分組 from sqlalchemy.sql import func ret = session.query(Users).group_by(Users.extra).all() ret = session.query( func.max(Users.id), func.sum(Users.id), func.min(Users.id)).group_by(Users.name).all() ret = session.query( func.max(Users.id), func.sum(Users.id), func.min(Users.id)).group_by(Users.name).having(func.min(Users.id) >2).all() # 連表 ret = session.query(Users, Favor).filter(Users.id == Favor.nid).all() ret = session.query(Person).join(Favor).all() ret = session.query(Person).join(Favor, isouter=True).all() # 組合 q1 = session.query(Users.name).filter(Users.id > 2) q2 = session.query(Favor.caption).filter(Favor.nid < 2) ret = q1.union(q2).all() q1 = session.query(Users.name).filter(Users.id > 2) q2 = session.query(Favor.caption).filter(Favor.nid < 2) ret = q1.union_all(q2).all()
進階
基於scop-session創建連接可以增加多線程操作的安全

#!/usr/bin/env python # -*- coding:utf-8 -*- from sqlalchemy.orm import sessionmaker from sqlalchemy import create_engine from sqlalchemy.orm import scoped_session from models import Users engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6", max_overflow=0, pool_size=5) Session = sessionmaker(bind=engine) """ # 方式一:由於無法提供線程共享功能,所有在開發時要注意,在每個線程中自己創建 session。 # from sqlalchemy.orm.session import Session # 自己具有操作數據庫的:'close', 'commit', 'connection', 'delete', 'execute', 'expire',..... session = SessionFactory() # print('原生session',session) # 操作 session.close() """ """ # 線程安全,基於本地線程實現每個線程用同一個session # 特殊的:scoped_session中有原來方法的Session中的一下方法: public_methods = ( '__contains__', '__iter__', 'add', 'add_all', 'begin', 'begin_nested', 'close', 'commit', 'connection', 'delete', 'execute', 'expire', 'expire_all', 'expunge', 'expunge_all', 'flush', 'get_bind', 'is_modified', 'bulk_save_objects', 'bulk_insert_mappings', 'bulk_update_mappings', 'merge', 'query', 'refresh', 'rollback', 'scalar' ) """ session = scoped_session(Session) # ############# 執行ORM操作 ############# obj1 = Users(name="alex1") session.add(obj1) # 提交事務 session.commit() # 關閉session session.remove()#我們不一樣
連表查詢FK

#!/usr/bin/env python # -*- coding:utf-8 -*- import time import threading from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index from sqlalchemy.orm import sessionmaker, relationship from sqlalchemy import create_engine from sqlalchemy.sql import text from sqlalchemy.engine.result import ResultProxy from db import Users, Hosts, Hobby, Person engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf8", max_overflow=0, pool_size=5) Session = sessionmaker(bind=engine) session = Session() # 添加 """ session.add_all([ Hobby(caption='乒乓球'), Hobby(caption='羽毛球'), Person(name='張三', hobby_id=3), Person(name='李四', hobby_id=4), ]) person = Person(name='張九', hobby=Hobby(caption='姑娘')) session.add(person) hb = Hobby(caption='人妖') hb.pers = [Person(name='文飛'), Person(name='博雅')] session.add(hb) session.commit() """ # 使用relationship正向查詢 """ v = session.query(Person).first() print(v.name) print(v.hobby.caption) """ # 使用relationship反向查詢 """ v = session.query(Hobby).first() print(v.caption) print(v.pers) """ session.close() 基於relationship操作ForeignKey
連表查詢M2M

#!/usr/bin/env python # -*- coding:utf-8 -*- import time import threading from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index from sqlalchemy.orm import sessionmaker, relationship from sqlalchemy import create_engine from sqlalchemy.sql import text from sqlalchemy.engine.result import ResultProxy from db import Users, Hosts, Hobby, Person, Group, Server, Server2Group engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf8", max_overflow=0, pool_size=5) Session = sessionmaker(bind=engine) session = Session() # 添加 """ session.add_all([ Server(hostname='c1.com'), Server(hostname='c2.com'), Group(name='A組'), Group(name='B組'), ]) session.commit() s2g = Server2Group(server_id=1, group_id=1) session.add(s2g) session.commit() gp = Group(name='C組') gp.servers = [Server(hostname='c3.com'),Server(hostname='c4.com')] session.add(gp) session.commit() ser = Server(hostname='c6.com') ser.groups = [Group(name='F組'),Group(name='G組')] session.add(ser) session.commit() """ # 使用relationship正向查詢 """ v = session.query(Group).first() print(v.name) print(v.servers) """ # 使用relationship反向查詢 """ v = session.query(Server).first() print(v.hostname) print(v.groups) """ session.close() 基於relationship操作m2m
關聯子查詢

#!/usr/bin/env python # -*- coding:utf-8 -*- import time import threading from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index from sqlalchemy.orm import sessionmaker, relationship from sqlalchemy import create_engine from sqlalchemy.sql import text, func from sqlalchemy.engine.result import ResultProxy from db import Users, Hosts, Hobby, Person, Group, Server, Server2Group engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf8", max_overflow=0, pool_size=5) Session = sessionmaker(bind=engine) session = Session() # 關聯子查詢 subqry = session.query(func.count(Server.id).label("sid")).filter(Server.id == Group.id).correlate(Group).as_scalar() result = session.query(Group.name, subqry) """ SELECT `group`.name AS group_name, (SELECT count(server.id) AS sid FROM server WHERE server.id = `group`.id) AS anon_1 FROM `group` """ # 原生SQL """ # 查詢 cursor = session.execute('select * from users') result = cursor.fetchall() # 添加 cursor = session.execute('insert into users(name) values(:value)',params={"value":'wupeiqi'}) session.commit() print(cursor.lastrowid) """ session.close() 其他
Flask-SQLAlchemy
flask-sqlalchemy 是在 sqlalchemy 的基礎上,提供了一些常用的工具,並預設了一些默認值,幫助你=我們更輕松地完成常見任務。
flask-sqlalchemy 用起來比直接用 sqlalchemy 方便、省事,不過有些高級一點的功能如果不了解 sqlalchemy 的話會用不好。
下面我們來詳述flask-sqlalchemy的操作方法
# 1. 引入Flask-SQLAlchemy from flask_sqlalchemy import SQLAlchemy # 2.實例化一個SQLAlchemy對象 """ 實例化方式一: 在函數里面,SQLAlchemy(app) #如果想在其他地方使用這種方式就不好使了,所以推薦使用方式二 """ #方式二 db = SQLAlchemy()#在全局中創建實例化 db.init_app(app) #在函數中調用init_app方法吧app放進去了 # 3. 導入models中的表 from .models import * #4. 在需要創建表的文件中導入db.model,所有的表再創建時繼承db.model #5. 借助Flask-Migrate組件來完成表的生成 """ 安裝 pip3 install Flask-Migrate # 5.1 導入 from flask_migrate import Migrate, MigrateCommand from app import create_app, db app = create_app() manager = Manager(app) # 5.2 創建migrate示例 migrate = Migrate(app, db) # 5.3 創建db命令 manager.add_command('db', MigrateCommand) """ #上述代碼完畢后,我們就可以在命令終端敲入類似Django的終端代碼在數據庫生成表了 python manage.py db init#只需初次創建庫時敲 #以下兩行代碼在每次對數據庫中的表進行修改時都需執行(數據庫遷移) python manage.py db migrate#功能與Django的python manage.py db makemigrations相同 python manage.py db upgrade#功能與Django的python manage.py db migrate相同 #以后執行SQL時,我們就可以實現與Django類似的ORM操作了: #方式一: result = db.session.query(models.User.id,models.User.name).all() db.session.remove() #方式二: result = models.Users.query.all()

import User # 導入模型類 # ---------- 查詢所有。 (User是模型類名) user_list = User.query.all() # 返回列表 # ---------- 查詢第一個 user1 = User.query.first() # 存在則返回模型類對象,不存在返回None # ---------- 根據主鍵id查詢 user2 = User.query.get(3) # ---------- 查詢結果的數量 user_count = User.query.count() # ---------- 過濾器 # filter_by過濾器 (精確條件) user_list = User.query.filter_by(name='wang').all() # 條件只能是等號= user = User.query.filter_by(name='wang', age=18).first() # filter過濾器 (通用過濾器。模糊查詢) user = User.query.filter(User.name=="wang", User.age==18).first() # 條件可以是==、>、<、>=、<=、!= user_list = User.query.filter(User.name.endswith('g')).all() # endswith、startswith、contains # 支持鏈式查詢 user = User.query.filter(User.name == 'wang').filter(User.age == 18) # ---------- 邏輯運算符 from sqlalchemy import or_, and_, not_ user_list = User.query.filter(or_(User.name!='wang', User.email.endswith('163.com'))).all() # ---------- 其他過濾器 user_list = User.query.filter(User.name!="wang").offset(5).limit(5).order_by("-id").all() # order_by("-id")中的-表示降序 user_list = User.query.order_by(User.id.desc()).all() # SQLAlchemy的原生排序方式。(默認升序) # ---------- 通過session會話注入sql。(SQLAlchemy的原始方式。 上面通過query查詢的方式是flask-sqlalchemy封裝的查詢方式) from flask_sqlalchemy import SQLAlchemy db = SQLAlchemy(app) # app是程序實例 user_list = db.session.query(User).all() # 查詢所有。 query(User)表示查詢所有列 sql = 'select * from tb_user;' users = db.session.execute(sql) # ---------- 聚合函數,group_by()分組 from sqlalchemy import func # 導入聚合函數 obj_list = db.session.query(User.name, User.role_id, func.count(User.role_id)).group_by(User.role_id).all() # 返回列表中的元素內容取決於查詢的列 # ---------- 分頁查詢 paginate_obj = User.query.paginate(page=1, per_page=20, error_out=False) # 第一頁,每頁20條數據。 默認第一頁 # 參數:error_out 設為True表示頁數不是int或超過總頁數時,會報錯,並返回404狀態碼。默認True ''' 分頁對象的屬性 items:對象的值,列表 has_next:如果在目前頁后至少還有一頁的話,返回 True #注意:has_next和has_prev是判斷前后兩頁是否有對象,結果是True和False has_prev:如果在目前頁之前至少還有一頁的話,返回 True next_num:下一頁的頁面數 prev_num:前一頁的頁面數 page.prev():返回上一頁對象 page.next():返回下一頁對象 '''
方法 | 說明 |
all() | 返回所有結果,列表 |
first() | 返回第一個對應的記錄,如果沒有則返回None |
first_or_404() | 返回第一個對應的記錄,如果沒有則拋出異常 |
get() | 返回主鍵對應的記錄,如果沒有則返回None |
get_or_404() | 返回主鍵對應的記錄,如果沒有則拋出異常 |
count() | 返回查詢結果數量 |
paginate() | 返回分頁對象 |