使用K-S檢驗一個數列是否服從正態分布、兩個數列是否服從相同的分布


 

假設檢驗的基本思想:

       若對總體的某個假設是真實的,那么不利於或者不能支持這一假設的事件A在一次試驗中是幾乎不可能發生的。如果事件A真的發生了,則有理由懷疑這一假設的真實性,從而拒絕該假設。

實質分析:

        假設檢驗實質上是對原假設是否正確進行檢驗,因此檢驗過程中要使原假設得到維護,使之不輕易被拒絕;否定原假設必須有充分的理由。同時,當原假設被接受時,也只能認為否定該假設的根據不充分,而不是認為它絕對正確。

 

1、檢驗指定的數列是否服從正態分布

借助假設檢驗的思想,利用K-S檢驗可以對數列的性質進行檢驗,看代碼:

from scipy.stats import kstest
import numpy as np
 
x = np.random.normal(0,1,1000)
test_stat = kstest(x, 'norm')

 

 

首先生成1000個服從N(0,1)標准正態分布的隨機數,在使用k-s檢驗該數據是否服從正態分布,提出假設:x從正態分布。

最終返回的結果,p-value=0.76584491300591395,比指定的顯著水平(假設為5%)大,則我們不能拒絕假設:x服從正態分布。

這並不是說x服從正態分布一定是正確的,而是說沒有充分的證據證明x不服從正態分布。因此我們的假設被接受,認為x服從正態分布。

如果p-value小於我們指定的顯著性水平,則我們可以肯定的拒絕提出的假設,認為x肯定不服從正態分布,這個拒絕是絕對正確的。

 

2、檢驗指定的兩個數列是否服從相同分布

from scipy.stats import ks_2samp
beta=np.random.beta(7,5,1000)
norm=np.random.normal(0,1,1000)
ks_2samp(beta,norm)

  

 
 

我們先分別使用beta分布和normal分布產生兩個樣本大小為1000的數列,使用ks_2samp檢驗兩個數列是否來自同一個樣本,提出假設:beta和norm服從相同的分布。

最終返回的結果,p-value=4.7405805465370525e-159,比指定的顯著水平(假設為5%)小,則我們完全可以拒絕假設:beta和norm不服從同一分布。


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM