Flask-SQLAlchemy常用操作


一.SQLAlchemy介紹

SQLAlchemy是一個基於Python實現的ORM框架。該框架建立在 DB API之上,使用關系對象映射進行數據庫操作,簡言之便是:將類和對象轉換成SQL,然后使用數據API執行SQL並獲取執行結果。

?
1
pip3 install sqlalchemy

組成部分:

  • Engine,框架的引擎
  • Connection Pooling ,數據庫連接池
  • Dialect,選擇連接數據庫的DB API種類
  • Schema/Types,架構和類型
  • SQL Exprression Language,SQL表達式語言

SQLAlchemy本身無法操作數據庫,其本質上是依賴pymysql.MySQLdb,mssql等第三方插件,Dialect用於和數據API進行交流,根據配置文件的不同調用不同的數據庫API,從而實現對數據庫的操作,如:

SQLAlchemy用一個字符串表示連接信息:

'數據庫類型+數據庫驅動名稱://用戶名:口令@機器地址:端口號/數據庫名'

 

?
1
2
3
4
5
6
7
8
9
10
11
12
13
MySQL - Python
     mysql + mysqldb: / / <user>:<password>@<host>[:<port>] / <dbname>
    
pymysql
     mysql + pymysql: / / <username>:<password>@<host> / <dbname>[?<options>]
    
MySQL - Connector
     mysql + mysqlconnector: / / <user>:<password>@<host>[:<port>] / <dbname>
    
cx_Oracle
     oracle + cx_oracle: / / user: pass @host:port / dbname[?key = value&key = value...]
    
更多:http: / / docs.sqlalchemy.org / en / latest / dialects / index.html

底層處理

使用 Engine/ConnectionPooling/Dialect 進行數據庫操作,Engine使用ConnectionPooling連接數據庫,然后再通過Dialect執行SQL語句。

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# auth : pangguoping
from sqlalchemy import create_engine

engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=5)

# 執行SQL
# cur = engine.execute(
#     "INSERT INTO hosts (host, color_id) VALUES ('1.1.1.22', 3)"
# )

# 新插入行自增ID
# cur.lastrowid

# 執行SQL
# cur = engine.execute(
#     "INSERT INTO hosts (host, color_id) VALUES(%s, %s)",[('1.1.1.22', 3),('1.1.1.221', 3),]
# )


# 執行SQL
# cur = engine.execute(
#     "INSERT INTO hosts (host, color_id) VALUES (%(host)s, %(color_id)s)",
#     host='1.1.1.99', color_id=3
# )

# 執行SQL
# cur = engine.execute('select * from hosts')
# 獲取第一行數據
# cur.fetchone()
# 獲取第n行數據
# cur.fetchmany(3)
# 獲取所有數據
# cur.fetchall()

說白了就是使用pymysql的方法一樣.

二. 使用

1. 執行原生SQL語句

import time
import threading
import sqlalchemy
from sqlalchemy import create_engine
from sqlalchemy.engine.base import Engine
 
engine = create_engine(
    "mysql+pymysql://root:123@127.0.0.1:3306/t1?charset=utf8",
    max_overflow=0,  # 超過連接池大小外最多創建的連接
    pool_size=5,  # 連接池大小
    pool_timeout=30,  # 池中沒有線程時,最多等待的時間,超時報錯,默認30秒
    pool_recycle=-1  # 多久之后對線程池中的線程進行一次連接的回收(重置),-1代表永遠不回收,即一直被重用
)
 
 
def task(arg):
    conn = engine.raw_connection()  #拿到的是一個原生的pymysql連接對象
    cursor = conn.cursor()
    cursor.execute(
        "select * from t1"
    )
    result = cursor.fetchall()
    cursor.close()
    conn.close()
 
 
for i in range(20):
    t = threading.Thread(target=task, args=(i,))
    t.start()

  

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import time
import threading
import sqlalchemy
from sqlalchemy import create_engine
from sqlalchemy.engine.base import Engine

engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=0, pool_size=5)


def task(arg):
    conn = engine.contextual_connect()
    with conn:
        cur = conn.execute(
            "select * from t1"
        )
        result = cur.fetchall()
        print(result)


for i in range(20):
    t = threading.Thread(target=task, args=(i,))
    t.start()
View Code
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import time
import threading
import sqlalchemy
from sqlalchemy import create_engine
from sqlalchemy.engine.base import Engine
from sqlalchemy.engine.result import ResultProxy
engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=0, pool_size=5)


def task(arg):
    cur = engine.execute("select * from t1")
    result = cur.fetchall()
    cur.close()
    print(result)


for i in range(20):
    t = threading.Thread(target=task, args=(i,))
    t.start()
View Code

注意: 查看連接,進程cmd,mysql中>輸入  show status like 'Threads%';

2. ORM

a. 創建數據庫表

創建單表

import datetime
from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, Text, ForeignKey, DateTime, UniqueConstraint, Index

Base = declarative_base()   # 創建對象的基類:

# 定義User對象:
class Users(Base):
    # 表的名字:
    __tablename__ = 'users'

    # 表的結構:
    id = Column(Integer, primary_key=True)
    name = Column(String(32), index=True, nullable=False,default='xx')   # index指定是否是索引,nullable是否能為空
    email = Column(String(32), unique=True)   # 指定唯一
    ctime = Column(DateTime, default=datetime.datetime.now) #注意,此處設置時datetime.datetime.now若加了括號,則時間永遠是程序啟動時的時間,后面創建數據時,不會變化
    extra = Column(Text, nullable=True)

    __table_args__ = (
        UniqueConstraint('id', 'name', name='uix_id_name'), # 聯合唯一索引
        Index('ix_id_name', 'name', 'email'), #給name和email創建普通索引,索引名為ix_id_name
    )


def init_db():
    """
    根據類創建數據庫表
    :return: 
    """
    # 初始化數據庫連接:
    engine = create_engine(
        "mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf8",
        max_overflow=0,  # 超過連接池大小外最多創建的連接
        pool_size=5,  # 連接池大小
        pool_timeout=30,  # 池中沒有線程最多等待的時間,否則報錯
        pool_recycle=-1  # 多久之后對線程池中的線程進行一次連接的回收(重置)
    )

    Base.metadata.create_all(engine) #找到所有繼承了Base的類,按照其結構建表


def drop_db():
    """
    根據類刪除數據庫表
    :return: 
    """
    engine = create_engine(
        "mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf8",
        max_overflow=0,  # 超過連接池大小外最多創建的連接
        pool_size=5,  # 連接池大小
        pool_timeout=30,  # 池中沒有線程最多等待的時間,否則報錯
        pool_recycle=-1  # 多久之后對線程池中的線程進行一次連接的回收(重置)
    )

    Base.metadata.drop_all(engine)


if __name__ == '__main__':
    drop_db()
    init_db()

  

默認建的表的引擎是MyISAM,如果要設置成InnoDB(支持事務),該怎么設置呢?

    __table_args__ = {
        'mysql_engine': 'InnoDB',   # 指定表的引擎
        'mysql_charset': 'utf8'     # 指定表的編碼格式
    }

 

FK,M2M關系的創建

from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, Text, ForeignKey, DateTime,UniqueConstraint, Index
from sqlalchemy.orm import relationship
Base = declarative_base()   # 創建對象的基類:


# ##################### 一對多示例 #########################
class Hobby(Base):
    __tablename__ = 'hobby'
    id = Column(Integer, primary_key=True)
    caption = Column(String(50), default='籃球')


class Person(Base):
    __tablename__ = 'person'
    nid = Column(Integer, primary_key=True)
    name = Column(String(32), index=True, nullable=True)
    hobby_id = Column(Integer, ForeignKey("hobby.id"))  #建FK關系

    # 與生成表結構無關,僅用於查詢方便
    hobby = relationship("Hobby", backref='pers')   #反向關聯的名字


# ##################### 多對多示例 #########################
# 這里多對多需要自己建第三張表,並綁定關系
class Server2Group(Base):   
    __tablename__ = 'server2group'
    id = Column(Integer, primary_key=True, autoincrement=True)  #autoincrement 設置自增
    server_id = Column(Integer, ForeignKey('server.id'))
    group_id = Column(Integer, ForeignKey('group.id'))


class Group(Base):
    __tablename__ = 'group'
    id = Column(Integer, primary_key=True)
    name = Column(String(64), unique=True, nullable=False)

    # 與生成表結構無關,僅用於查詢方便
    servers = relationship('Server', secondary='server2group', backref='groups')    #反向關聯的名字


class Server(Base):
    __tablename__ = 'server'

    id = Column(Integer, primary_key=True, autoincrement=True)
    hostname = Column(String(64), unique=True, nullable=False)


def init_db():
    """
    根據類創建數據庫表
    :return:
    """
    engine = create_engine(
        "mysql+pymysql://root:123@127.0.0.1:3306/userinfo?charset=utf8",
        max_overflow=0,  # 超過連接池大小外最多創建的連接
        pool_size=5,  # 連接池大小
        pool_timeout=30,  # 池中沒有線程最多等待的時間,否則報錯
        pool_recycle=-1  # 多久之后對線程池中的線程進行一次連接的回收(重置)
    )

    Base.metadata.create_all(engine)


def drop_db():
    """
    根據類刪除數據庫表
    :return:
    """
    engine = create_engine(
        "mysql+pymysql://root:123@127.0.0.1:3306/userinfo?charset=utf8",
        max_overflow=0,  # 超過連接池大小外最多創建的連接
        pool_size=5,  # 連接池大小
        pool_timeout=30,  # 池中沒有線程最多等待的時間,否則報錯
        pool_recycle=-1  # 多久之后對線程池中的線程進行一次連接的回收(重置)
    )

    Base.metadata.drop_all(engine)


if __name__ == '__main__':
    drop_db()
    init_db()

 

SQLALchemy不同於Django的ORM,當創建多對多關聯事,不會自動創建第三張表,需要我們自己定義關系表,進行關聯

 

b. 操作數據庫表

#!/usr/bin/env python
# -*- coding:utf-8 -*-
from sqlalchemy.orm import sessionmaker
from sqlalchemy import create_engine
from models import Users
  
engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6", max_overflow=0, pool_size=5)
Session = sessionmaker(bind=engine)    #創建Session類
  
# 每次執行數據庫操作時,都需要創建一個session
session = Session()    # 創建session對象:
  
# ############# 執行ORM操作 #############
# 創建新User對象
obj1 = Users(name="alex1")    
# 添加到session:
session.add(obj1)
# 提交即保存到數據庫:
session.commit()
# 關閉session
session.close()

 

c.通過原生SQL語句執行

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import time
import threading

from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engine
from sqlalchemy.sql import text
from sqlalchemy.engine.result import ResultProxy
from db import Users, Hosts

engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6", max_overflow=0, pool_size=5)
Session = sessionmaker(bind=engine)

session = Session()

# 查詢
# cursor = session.execute('select * from users')
# result = cursor.fetchall()

# 添加
cursor = session.execute('insert into users(name) values(:value)',params={"value":'hc'})
# 注意占位符和傳參的形式
session.commit()
print(cursor.lastrowid)

session.close()

原生SQL語句
View Code

 

 

 

d.基本增刪改查示例

https://www.keakon.net/2012/12/03/SQLAlchemy使用經驗

 

import time
import threading

from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engine
from sqlalchemy.sql import text

from db import Users, Hosts

engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6", max_overflow=0, pool_size=5)
Session = sessionmaker(bind=engine)

session = Session()

# ################ 添加 ################

obj1 = Users(name="hc")
session.add(obj1)   #添加一個對象

session.add_all([
    Users(name="hc"),
    Users(name="alex"),
    Hosts(name="c1.com"),
])      #添加多個對象
session.commit()


# ################ 刪除 ################

# filter是where條件,最后調用one()或first()返回唯一行,如果調用all()則返回所有行
session.query(Users).filter(Users.id > 2).delete()  #刪除Users表中id大於2的數據
session.commit()

# ################ 修改 ################

session.query(Users).filter(Users.id > 0).update({"name" : "099"})  # 將Users表中id>0的數據,把name字段改為099
# 更新user表中id大於2的name列,在原字符串后邊增加099
session.query(Users).filter(Users.id > 0).update({Users.name: Users.name + "099"}, synchronize_session=False)    #synchronize_session設置為False即執行字符串拼接
# 更新user表中id大於2的num列,使最終值在原來數值基礎上加1
session.query(Users).filter(Users.id > 0).update({"age": Users.age + 1}, synchronize_session="evaluate")    #synchronize_session設置為evaluate即執行四則運算

session.commit()

# ################ 查詢 ################

r1 = session.query(Users).all()
r2 = session.query(Users.name.label('xx'), Users.age).all()     #label 取別名的,即在查詢結果中,顯示name的別名'xx'
r3 = session.query(Users).filter(Users.name == "alex").one()    # one()返回唯一行,類似於django的get,如果返回數據為多個則報錯
r3 = session.query(Users).filter(Users.name == "alex").all()    # all()獲取所有數據
r4 = session.query(Users).filter_by(name='alex').all()          # 注意filter和filter_by后面括號內條件的寫法
r5 = session.query(Users).filter_by(name='alex').first()        # first()獲取返回數據的第一行
r6 = session.query(Users).filter(text("id<:value and name=:name")).params(value=224, name='fred').order_by(Users.id).all()  
#order_by后面還可以.desc()降序排列,默認為.asc()升序排列
# text(自定義條件,:的功能類似%s占位),params中進行傳參
r7 = session.query(Users).from_statement(text("SELECT * FROM Hosts where name=:name")).params(name='ed').all()
# text中還能從另一個表中查詢,前面要用from_statement,而不是filter


session.close()

 

當我們使用in_查詢時,如果進行刪除會更新,會出現如下錯誤

InvalidRequestError: Could not evaluate current criteria in Python. Specify 'fetch' or False for the synchronize_session parameter.

解決辦法:加上 synchronize_session=False

https://segmentfault.com/q/1010000000130368

  

e.基於relationship操作ForeignKey

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import time
import threading

from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engine
from sqlalchemy.sql import text
from sqlalchemy.engine.result import ResultProxy
from db import Users, Hosts, Hobby, Person

engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf8", max_overflow=0, pool_size=5)
Session = sessionmaker(bind=engine)
session = Session()
# 添加
"""
session.add_all([
    Hobby(caption='乒乓球'),
    Hobby(caption='羽毛球'),
    Person(name='張三', hobby_id=3),
    Person(name='李四', hobby_id=4),
])

person = Person(name='張九', hobby=Hobby(caption='姑娘'))
session.add(person)

hb = Hobby(caption='人妖')
hb.pers = [Person(name='文飛'), Person(name='博雅')]
session.add(hb)     #  會同時創建3條數據(1條hobby的數據,2條person的數據)

session.commit()
"""

# 使用relationship正向查詢
"""
v = session.query(Person).first()
print(v.name)
print(v.hobby.caption)
"""

# 使用relationship反向查詢
"""
v = session.query(Hobby).first()
print(v.caption)
print(v.pers)
"""

session.close()

 

 

 

f.基於relationship操作m2m

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import time
import threading

from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engine
from sqlalchemy.sql import text
from sqlalchemy.engine.result import ResultProxy
from db import Users, Hosts, Hobby, Person, Group, Server, Server2Group

engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf8", max_overflow=0, pool_size=5)
Session = sessionmaker(bind=engine)
session = Session()
# 添加
"""
session.add_all([
    Server(hostname='c1.com'),
    Server(hostname='c2.com'),
    Group(name='A組'),
    Group(name='B組'),
])
session.commit()

s2g = Server2Group(server_id=1, group_id=1)
session.add(s2g)
session.commit()


gp = Group(name='C組')
gp.servers = [Server(hostname='c3.com'),Server(hostname='c4.com')]
session.add(gp)
session.commit()


ser = Server(hostname='c6.com')
ser.groups = [Group(name='F組'),Group(name='G組')]
session.add(ser)
session.commit()
"""


# 使用relationship正向查詢
"""
v = session.query(Group).first()
print(v.name)
print(v.servers)
"""

# 使用relationship反向查詢
"""
v = session.query(Server).first()
print(v.hostname)
print(v.groups)
"""


session.close()

基於relationship操作m2m
View Code

 

g.進階操作

in_、notin_、and、or、like、limit、排序、分組、連表、組合

# 條件
ret = session.query(Users).filter_by(name='alex').all() #
ret = session.query(Users).filter(Users.id > 1, Users.name == 'eric').all() # 且的關系
ret = session.query(Users).filter(Users.id.between(1, 3), Users.name == 'eric').all()
ret = session.query(Users).filter(Users.id.in_([1,3,4])).all()
ret = session.query(Users).filter(~Users.id.in_([1,3,4])).all() # ~表示非。就是not in的意思
ret = session.query(Users).filter(Users.id.in_(session.query(Users.id).filter_by(name='eric'))).all() # 聯表查詢
from sqlalchemy import and_, or_   # 且和or的關系
ret = session.query(Users).filter(and_(Users.id > 3, Users.name == 'eric')).all() # 條件以and方式排列
ret = session.query(Users).filter(or_(Users.id < 2, Users.name == 'eric')).all() # 條件以or方式排列
ret = session.query(Users).filter(
    or_( #這部分表示括號中的條件都以or的形式匹配
        Users.id < 2, # 或者 or User.id < 2
        and_(Users.name == 'eric', Users.id > 3),# 表示括號中這部分進行and匹配
        Users.extra != ""
    )).all()
 
 
# 通配符
ret = session.query(Users).filter(Users.name.like('e%')).all()
ret = session.query(Users).filter(~Users.name.like('e%')).all() # 表示not like
 
# 限制 limit用法
ret = session.query(Users)[1:2] # 等於limit ,具體功能需要自己測試
 
# 排序
ret = session.query(Users).order_by(Users.name.desc()).all()
ret = session.query(Users).order_by(Users.name.desc(), Users.id.asc()).all() # 按照name從大到小排列,如果name相同,按照id從小到大排列
 
# 分組
from sqlalchemy.sql import func
 
ret = session.query(Users).group_by(Users.extra).all()
ret = session.query(
    func.max(Users.id),
    func.sum(Users.id),
    func.min(Users.id)).group_by(Users.name).all()
 
ret = session.query(
    func.max(Users.id),
    func.sum(Users.id),
    func.min(Users.id)).group_by(Users.name).having(func.min(Users.id) >2).all() # having對聚合的內容再次進行過濾
 
# 連表
 
ret = session.query(Users, Favor).filter(Users.id == Favor.nid).all()
 
ret = session.query(Person).join(Favor).all()
# 默認是inner join
ret = session.query(Person).join(Favor, isouter=True).all() # isouter表示是left join
 
# 組合
q1 = session.query(Users.name).filter(Users.id > 2)
q2 = session.query(Favor.caption).filter(Favor.nid < 2)
ret = q1.union(q2).all() #union默認會去重
 
q1 = session.query(Users.name).filter(Users.id > 2)
q2 = session.query(Favor.caption).filter(Favor.nid < 2)
ret = q1.union_all(q2).all() # union_all不去重

 去重

https://segmentfault.com/a/1190000006949536

 關聯子查詢

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import time
import threading

from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engine
from sqlalchemy.sql import text, func
from sqlalchemy.engine.result import ResultProxy
from db import Users, Hosts, Hobby, Person, Group, Server, Server2Group

engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf8", max_overflow=0, pool_size=5)
Session = sessionmaker(bind=engine)
session = Session()

# 關聯子查詢
subqry = session.query(func.count(Server.id).label("sid")).filter(Server.id == Group.id).correlate(Group).as_scalar()
result = session.query(Group.name, subqry)
"""
SELECT `group`.name AS group_name, (SELECT count(server.id) AS sid 
FROM server 
WHERE server.id = `group`.id) AS anon_1 
FROM `group`
"""


# 原生SQL
"""
# 查詢
cursor = session.execute('select * from users')
result = cursor.fetchall()

# 添加
cursor = session.execute('insert into users(name) values(:value)',params={"value":'wupeiqi'})
session.commit()
print(cursor.lastrowid)
"""

session.close()
View Code

 

        子查詢:
            session.query(Users).filter(Users.id.in_(session.query(Users.id).filter_by(name='eric'))).all()
            """
            select * from users where id in (select id from xxx)
            """
        
        
            subqry = session.query(func.count(Server.id).label("sid")).filter(Server.id == Group.id).correlate(Group).as_scalar()
            #第一步:  session.query(func.count(Server.id).label("sid")).filter(Server.id == Group.id)
            #這句的sql語句為 select count(id) as sid from server where server.id = group.id      如果直接運行,則會報錯
            # 第二步:.correlate(Group).as_scalar() ==> 代表此時不執行查詢操作,將其當作條件,在group表中查詢時,才執行查詢
            
                    
            result = session.query(Group.name, subqry)
            # sql語句為:select group.name  subqry  from group
            #第三步:將subqry替換為上面的條件,則此句的SQL為:
            #    select group.name,(select count(id) as sid from server where server.id = group.id) as xx  from group

 

class User(db.Model):
    __tablename__ = "user"
    id = db.Column(db.Integer, primary_key=True)  
    name = db.Column(db.String(100), unique=True, nullable=False)  
    pwd = db.Column(db.String(100), nullable=False) 
    role_id = db.Column(db.Integer, default=0) 
    email = db.Column(db.String(100), nullable=True)  
    addtime = db.Column(db.DateTime, index=True, default=datetime.now)  
    is_active = db.Column(db.Boolean, default=True) 
    uid = db.Column(db.String(24), nullable=False, default=uuid, unique=True, server_default=uuid())

class Userlog(db.Model):
    __tablename__ = "userlog"
    id = db.Column(db.Integer, primary_key=True) 
    user_id = db.Column(db.Integer, default=0) db.ForeignKey('user.id')
    ip = db.Column(db.String(100)) 
    addtime = db.Column(db.DateTime, index=True, default=datetime.now)  

orm語句

subqry = db.session.query(Userlog).order_by(Userlog.id.desc()).subquery()
        s = aliased(Userlog,subqry)
        rs = db.session.query(User, s.ip.label('last_ip'), s.addtime.label('last_time')).outerjoin(s,
                                                                                                   User.id == s.user_id).group_by(
            s.user_id)
print rs

對應的sql語句

SELECT user.id AS user_id, user.name AS user_name, user.pwd AS user_pwd, user.role_id AS user_role_id, user.email AS user_email, user.addtime AS user_addtime, user.is_active AS user_is_active, user.uid AS user_uid, anon_1.ip AS last_ip, anon_1.addtime AS last_time 
FROM user LEFT OUTER JOIN (SELECT userlog.id AS id, userlog.user_id AS user_id, userlog.ip AS ip, userlog.addtime AS addtime 
FROM userlog ORDER BY userlog.id DESC) AS anon_1 ON user.id = anon_1.user_id GROUP BY anon_1.user_id

 

 

點擊

 

1.多條件組合,可以用and_,or_實現。最外層時,and_可以省略,默認用逗號分開條件。

db.session.query(User).filter(
        and_(
            or_(User.name==name1,User.name==name2),
            or_(User.status==1,User.status==2)
        ),
        User.active==1
    ).first()

2.動態組合條件。針對不同的場景,可能需要不同的查詢條件,類似動態的拼接SQL 語句。

        if filter_type == 1:
            search = and_(GameRoom.status ==1,or_(
                and_(GameRoom.white_user_id == user_id,
                     GameRoom.active_player == 1),
                and_(GameRoom.black_user_id == user_id,
                     GameRoom.active_player == 0)))
        elif filter_type == 2:
            search = and_(GameRoom.status ==1,or_(
                and_(GameRoom.white_user_id == user_id,
                     GameRoom.active_player == 0),
                and_(GameRoom.black_user_id == user_id,
                     GameRoom.active_player == 1)))
        elif filter_type == 3:
            search = GameRoom.create_by == user_id
        
        db.session.query(GameRoom).filter(search).all()

3.關聯查詢。對應SQL的join和left join等。

    session.query(User, Address).filter(User.id == Address.user_id).all()
    session.query(User).join(User.addresses).all()
    session.query(User).outerjoin(User.addresses).all()

4.使用別名用aliased,aliased在orm包中。當要對同一個表使用多次關聯時,可能需要用到別名。同時,如果查詢的結果有多個同名的字段,可以使用label重命名。

black_user = orm.aliased(User)
white_user = orm.aliased(User)
db.session.query(
            GameRoom,
            black_user.score.label("black_score"),
            white_user.score.label("white_score")
            ).outerjoin(black_user,GameRoom.black_user_id==black_user.user_id).outerjoin(
                white_user,GameRoom.white_user_id==white_user.user_id).filter(
                    GameRoom.id==room_id
            ).all()

5.聚合查詢和使用數據庫函數。func可以調用各種聚合函數,和當前數據庫支持的其它函數。

session.query(User.name, func.count('*').label("user_count")).group_by(User.name).all()

session.query(User.name, func.sum(User.id).label("user_id_sum")).filter(func.to_days(User.create_date)==func.to_days(func.now())).group_by(User.name).all()

6.子查詢

stmt = db.session.query(Address.user_id, func.count('*').label("address_count")).group_by(Address.user_id).subquery()
db.session.query(User, stmt.c.address_count).outerjoin((stmt, User.id == stmt.c.user_id)).order_by(User.id).all()

7.直接運行SQL語句查詢。如果查詢實在太復雜,覺得用SQLAlchemy查詢方式很難實現,或者要通過存儲過程實現查詢,可以讓SQLAlchemy直接運行SQL語句返回結果。

        sql ="""select b.user_id,b.user_name,b.icon,b.score,a.add_score from
            (select user_id, sum(score_new - score_old) as add_score from user_score_log
            where year(create_date)=year(now()) and month(create_date)=month(now())
            group by user_id) a join users b on a.user_id=b.user_id
            order by a.add_score desc limit 50"""
        list_top = db.session.execute(sql).fetchall()

8.分頁查詢。sqlalchemy中分頁用到pagination,先不說性能怎么樣,使用起來是真的非常方便。

        pagination = GameMessage.query.filter(GameMessage.game_id==game_id).\
            order_by(GameMessage.id.desc()).\
            paginate(page, per_page=20, error_out=True)
        pages = pagination.pages
        total = pagination.total
        items = pagination.items

 

 

 

 h.session對象如何實現線程安全?

session有兩種創建方式

方式一:

from sqlalchemy.orm import sessionmaker
from sqlalchemy import create_engine

engine = create_engine(
    "mysql+pymysql://root:123@47.93.4.198:3306/s6?charset=utf8",
    max_overflow=0,  # 超過連接池大小外最多創建的連接
    pool_size=5,  # 連接池大小
    pool_timeout=30,  # 池中沒有線程最多等待的時間,否則報錯
    pool_recycle=-1  # 多久之后對線程池中的線程進行一次連接的回收(重置)
)
Session = sessionmaker(bind=engine)

# 方式一:
# 由於無法提供線程共享功能,所有在開發時要注意,在每個線程中自己創建 session。
#  from sqlalchemy.orm.session import Session
#         具有操作數據庫的:'close', 'commit', 'connection', 'delete', 'execute', 'expire',.....
session = Session()     # 創建普通的session
print('原生session',session)
# 操作數據庫
session.close()

由於無法提供線程共享功能,所有在開發時要注意,在每個線程中自己創建 session
解決辦法如下:
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import time
import threading

from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engine
from db import Users

engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6", max_overflow=0, pool_size=5)
Session = sessionmaker(bind=engine)


def task(arg):
    session = Session()

    obj1 = Users(name="alex1")
    session.add(obj1)

    session.commit()


for i in range(10):
    t = threading.Thread(target=task, args=(i,))
    t.start()
多線程執行示例

 

方式二(推薦):

from sqlalchemy.orm import sessionmaker
from sqlalchemy import create_engine
from sqlalchemy.orm import scoped_session

engine = create_engine(
    "mysql+pymysql://root:123@47.93.4.198:3306/s6?charset=utf8",
    max_overflow=0,  # 超過連接池大小外最多創建的連接
    pool_size=5,  # 連接池大小
    pool_timeout=30,  # 池中沒有線程最多等待的時間,否則報錯
    pool_recycle=-1  # 多久之后對線程池中的線程進行一次連接的回收(重置)
)
Session = sessionmaker(bind=engine)

# 方式二:支持線程安全,自動為每個線程創建一個session,單線程時,只創建一個
#               - threading.Local
#               - 唯一標識
# ScopedSession對象
#       self.registry(), 加括號 創建session
#       self.registry(), 加括號 創建session
#       self.registry(), 加括號 創建session
from greenlet import getcurrent as get_ident #本地線程的唯一標識的函數,加括號則執行函數
session = scoped_session(Session,get_ident)
# session.add
# 操作數據庫
session.remove()
支持線程安全,自動為每個線程創建一個session,單線程時,只創建一個

 

 

I.sqlalchemy-utils給SqlAlchemy提供choice功能

SqlAlchemy本身沒有chocie,需要安裝這個才能提供choice功能

pip install sqlalchemy-utils

 

from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column,Integer,String
from sqlalchemy_utils import ChoiceType
from sqlalchemy import create_engine

Base = declarative_base()
class User(Base):
    __tablename__ = 'users'
    type_choices=(
        (1,'北京'),
        (2,'上海'),
        )
    id = Column(Integer, primary_key=True)  #必須要有主鍵
    name =Column(String(64))
    types=Column(ChoiceType(type_choices,Integer()))    # 注意:Integer后面要有括號

    __table_args__ = {
        'mysql_engine': 'InnoDB',
        'mysql_charset': 'utf8'
    }

def init_db():
    """
    根據類創建數據庫表
    :return:
    """
    engine = create_engine(
        "mysql+pymysql://root:123@127.0.0.1:3306/db1?charset=utf8",
        max_overflow=0,  # 超過連接池大小外最多創建的連接
        pool_size=5,  # 連接池大小
        pool_timeout=30,  # 池中沒有線程最多等待的時間,否則報錯
        pool_recycle=-1  # 多久之后對線程池中的線程進行一次連接的回收(重置)
    )

    Base.metadata.create_all(engine)


def drop_db():
    """
    根據類刪除數據庫表
    :return:
    """
    engine = create_engine(
        "mysql+pymysql://root:123@127.0.0.1:3306/db1?charset=utf8",
        max_overflow=0,  # 超過連接池大小外最多創建的連接
        pool_size=5,  # 連接池大小
        pool_timeout=30,  # 池中沒有線程最多等待的時間,否則報錯
        pool_recycle=-1  # 多久之后對線程池中的線程進行一次連接的回收(重置)
    )

    Base.metadata.drop_all(engine)


if __name__ == '__main__':
    drop_db()
    init_db()
建表
#! /usr/bin/env python
# -*- coding: utf-8 -*-
# __author__ = "HuChong"
# Date: 2018/1/12

from sqlalchemy.orm import sessionmaker
from sqlalchemy import create_engine
from ru import User

engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/db1", max_overflow=0, pool_size=5)
Session = sessionmaker(bind=engine)

session = Session()

obj1 = User(name="xz",types=1)
obj2 = User(name="zz",types=2)
session.add_all([obj1,obj2])
session.commit()
session.close()
插入數據
#! /usr/bin/env python
# -*- coding: utf-8 -*-
# __author__ = "HuChong"
# Date: 2018/1/12

from sqlalchemy.orm import sessionmaker
from sqlalchemy import create_engine
from ru import User

engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/db1", max_overflow=0, pool_size=5)
Session = sessionmaker(bind=engine)

session = Session()

result_list=session.query(User).all()
print(result_list)
for item in result_list:
    print(item.types)
    print(item.types.code,item.types.value)

session.close()


#######打印結果如下########
'''
[<ru.User object at 0x0386D770>, <ru.User object at 0x0386D7D0>]
Choice(code=1, value=北京)
1 北京
Choice(code=2, value=上海)
2 上海
'''
獲取值

 

 

三、Flask-SQLAlchemy及Flask-Migrate組件

1.Flask-SQLAlchemy

  用於將Flask和SQLAlchemy聯系起來,使用之前需要裝下面這個模塊

pip install flask-sqlalchemy

如果使用Flask-sqlalchemy組件,則在使用時有一點變化

# 1. 引入Flask-SQLAlchemy
from flask_sqlalchemy import SQLAlchemy
db = SQLAlchemy()    #實例化SQLAlchemy對象
# 2. 注冊 Flask-SQLAlchemy
    # SQLAlchemy(app)
    # 由於這個對象在其他地方想要使用,所有用以下方式注冊 
    db.init_app(app) #讀取配置文件,配置文件中寫以前在create_engine里面的鏈接數據
#settings.py中,加上配置

SQLALCHEMY_DATABASE_URI = "mysql+pymysql://root:123@47.93.4.198:3306/s6?charset=utf8"
SQLALCHEMY_POOL_SIZE = 2
SQLALCHEMY_POOL_TIMEOUT = 30
SQLALCHEMY_POOL_RECYCLE = -1

# 追蹤對象的修改並且發送信號
SQLALCHEMY_TRACK_MODIFICATIONS = False

# 3. 導入models中的表
from .models import *
from sqlalchemy import Column, Integer, String, Text, ForeignKey, DateTime, UniqueConstraint, Index
from app import db

# 4. 寫類繼承db.Model
class Users(db.Model):  #再不是繼承Base,而且繼承db.Model
    __tablename__ = 'users'

    id = Column(Integer, primary_key=True)
    name = Column(String(32), index=True, nullable=False)
    pwd = Column(String(32))

    __table_args__ = {
        'mysql_engine': 'InnoDB',   # 指定表的引擎
        'mysql_charset': 'utf8'     # 指定表的編碼格式
    }


class Group(db.Model):
    __tablename__ = 'group'

    id = Column(Integer, primary_key=True)
    name = Column(String(32), index=True, nullable=False)

    __table_args__ = {
        'mysql_engine': 'InnoDB',
        'mysql_charset': 'utf8'
    }
# 5. 創建和刪除表
  #  以后執行db.create_all()
  #  以后執行db.drop_all()
但是這樣不好,我們引入 Flask-Migrate

2.Flask-Migrate

可以通過類似Django里的命令,進行數據遷移,創建表,刪除表,更新表

安裝  pip install Flask-Migrate
# 5.1 導入
from flask_migrate import Migrate, MigrateCommand
from app import create_app, db

app = create_app()
manager = Manager(app)
# 5.2 創建migrate實例
migrate = Migrate(app, db)

 

#執行命令:
    初次:python manage.py db init
    
    python manage.py db migrate
    python manage.py db upgrade

 

以后執行SQL時:
    方式一:
        result = db.session.query(models.User.id,models.User.name).all()
        db.session.remove()
    方式二:
        result = models.Users.query.all()

 

 3.代碼規范之生成requestments.txt文件

pip  freeze  # 獲取環境中所有安裝的模塊以及其對應的版本
        
pip  freeze > requirements.txt  # 生成對應的文本文件

 

由於獲取的是所有,我們還得自己手動在文本里刪除一些不必要的,所有這個方法不好,我們使用下面的方法

 pip install pipreqs

首先安裝模塊,安裝完成以后,我們就可以在終端,執行pipreqs命令

# 獲取當前所在程序目錄中涉及到的所有模塊,並自動生成 requirements.txt 且寫入內容。
 pipreqs ./

建議在Linux系統下使用,windows環境下會報錯

 

以后使用別人的程序,進入程序目錄:

安裝requirements.txt依賴
pip install -r requirements.txt

會自動安裝文件里,所有對應版本模塊

https://segmentfault.com/a/1190000003050954

 

 

 

http://www.cnblogs.com/huchong/p/8797516.html

 

http://docs.jinkan.org/docs/flask/patterns/sqlalchemy.html

SQLAlchemy外鍵和關系

http://www.codexiu.cn/python/SQLAlchemy%E5%9F%BA%E7%A1%80%E6%95%99%E7%A8%8B/73/530/

 lazy的用法

 http://shomy.top/2016/08/11/flask-sqlalchemy-relation-lazy/

 

 

 

 

 

 

 

 

 

 

 

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM