深度學習過程


到這一步,終於可以聊到Deep learning了。上面我們聊到為什么會有Deep learning(讓機器自動學習良好的特征,而免去人工選取過程。還有參考人的分層視覺處理系統),我們得到一個結論就是Deep learning需要多層來獲得更抽象的特征表達。那么多少層才合適呢?用什么架構來建模呢?怎么進行非監督訓練呢?


五、Deep Learning的基本思想

       假設我們有一個系統S,它有n層(S1,…Sn),它的輸入是I,輸出是O,形象地表示為: I =>S1=>S2=>…..=>Sn => O,如果輸出O等於輸入I,即輸入I經過這個系統變化之后沒有任何的信息損失(呵呵,大牛說,這是不可能的。信息論中有個“信息逐層丟失”的說法(信息處理不等式),設處理a信息得到b,再對b處理得到c,那么可以證明:a和c的互信息不會超過a和b的互信息。這表明信息處理不會增加信息,大部分處理會丟失信息。當然了,如果丟掉的是沒用的信息那多好啊),保持了不變,這意味着輸入I經過每一層Si都沒有任何的信息損失,即在任何一層Si,它都是原有信息(即輸入I)的另外一種表示。現在回到我們的主題Deep Learning,我們需要自動地學習特征,假設我們有一堆輸入I(如一堆圖像或者文本),假設我們設計了一個系統S(有n層),我們通過調整系統中參數,使得它的輸出仍然是輸入I,那么我們就可以自動地獲取得到輸入I的一系列層次特征,即S1,…, Sn。

       對於深度學習來說,其思想就是對堆疊多個層,也就是說這一層的輸出作為下一層的輸入。通過這種方式,就可以實現對輸入信息進行分級表達了。

       另外,前面是假設輸出嚴格地等於輸入,這個限制太嚴格,我們可以略微地放松這個限制,例如我們只要使得輸入與輸出的差別盡可能地小即可,這個放松會導致另外一類不同的Deep Learning方法。上述就是Deep Learning的基本思想。



六、淺層學習(Shallow Learning)和深度學習(Deep Learning)


       淺層學習是機器學習的第一次浪潮。

       20世紀80年代末期,用於人工神經網絡的反向傳播算法(也叫Back Propagation算法或者BP算法)的發明,給機器學習帶來了希望,掀起了基於統計模型的機器學習熱潮。這個熱潮一直持續到今天。人們發現,利用BP算法可以讓一個人工神經網絡模型從大量訓練樣本中學習統計規律,從而對未知事件做預測。這種基於統計的機器學習方法比起過去基於人工規則的系統,在很多方面顯出優越性。這個時候的人工神經網絡,雖也被稱作多層感知機(Multi-layer Perceptron),但實際是種只含有一層隱層節點的淺層模型。

        20世紀90年代,各種各樣的淺層機器學習模型相繼被提出,例如支撐向量機(SVM,Support Vector Machines)、 Boosting、最大熵方法(如LR,Logistic Regression)等。這些模型的結構基本上可以看成帶有一層隱層節點(如SVM、Boosting),或沒有隱層節點(如LR)。這些模型無論是在理論分析還是應用中都獲得了巨大的成功。相比之下,由於理論分析的難度大,訓練方法又需要很多經驗和技巧,這個時期淺層人工神經網絡反而相對沉寂。

        深度學習是機器學習的第二次浪潮。

        2006年,加拿大多倫多大學教授、機器學習領域的泰斗Geoffrey Hinton和他的學生RuslanSalakhutdinov在《科學》上發表了一篇文章,開啟了深度學習在學術界和工業界的浪潮。這篇文章有兩個主要觀點:1)多隱層的人工神經網絡具有優異的特征學習能力,學習得到的特征對數據有更本質的刻畫,從而有利於可視化或分類;2)深度神經網絡在訓練上的難度,可以通過“逐層初始化”(layer-wise pre-training)來有效克服,在這篇文章中,逐層初始化是通過無監督學習實現的。

        當前多數分類、回歸等學習方法為淺層結構算法,其局限性在於有限樣本和計算單元情況下對復雜函數的表示能力有限,針對復雜分類問題其泛化能力受到一定制約。深度學習可通過學習一種深層非線性網絡結構,實現復雜函數逼近,表征輸入數據分布式表示,並展現了強大的從少數樣本集中學習數據集本質特征的能力。(多層的好處是可以用較少的參數表示復雜的函數)




 
       深度學習的實質,是通過構建具有很多隱層的機器學習模型和海量的訓練數據,來學習更有用的特征,從而最終提升分類或預測的准確性。因此,“深度模型”是手段,“特征學習”是目的。區別於傳統的淺層學習,深度學習的不同在於:1)強調了模型結構的深度,通常有5層、6層,甚至10多層的隱層節點;2)明確突出了特征學習的重要性,也就是說,通過逐層特征變換,將樣本在原空間的特征表示變換到一個新特征空間,從而使分類或預測更加容易。與人工規則構造特征的方法相比,利用大數據來學習特征,更能夠刻畫數據的豐富內在信息。



七、Deep learning與Neural Network

        深度學習是機器學習研究中的一個新的領域,其動機在於建立、模擬人腦進行分析學習的神經網絡,它模仿人腦的機制來解釋數據,例如圖像,聲音和文本。深度學習是無監督學習的一種。

        深度學習的概念源於人工神經網絡的研究。含多隱層的多層感知器就是一種深度學習結構。深度學習通過組合低層特征形成更加抽象的高層表示屬性類別或特征,以發現數據的分布式特征表示。

       Deep learning本身算是machine learning的一個分支,簡單可以理解為neural network的發展。大約二三十年前,neural network曾經是ML領域特別火熱的一個方向,但是后來確慢慢淡出了,原因包括以下幾個方面:

1)比較容易過擬合,參數比較難tune,而且需要不少trick;

2)訓練速度比較慢,在層次比較少(小於等於3)的情況下效果並不比其它方法更優;

       所以中間有大約20多年的時間,神經網絡被關注很少,這段時間基本上是SVM和boosting算法的天下。但是,一個痴心的老先生Hinton,他堅持了下來,並最終(和其它人一起Bengio、Yann.lecun等)提成了一個實際可行的deep learning框架。

        Deep learning與傳統的神經網絡之間有相同的地方也有很多不同。

        二者的相同在於deep learning采用了神經網絡相似的分層結構,系統由包括輸入層、隱層(多層)、輸出層組成的多層網絡,只有相鄰層節點之間有連接,同一層以及跨層節點之間相互無連接,每一層可以看作是一個logistic regression模型;這種分層結構,是比較接近人類大腦的結構的。


 
       而為了克服神經網絡訓練中的問題,DL采用了與神經網絡很不同的訓練機制。傳統神經網絡中,采用的是back propagation的方式進行,簡單來講就是采用迭代的算法來訓練整個網絡,隨機設定初值,計算當前網絡的輸出,然后根據當前輸出和label之間的差去改變前面各層的參數,直到收斂(整體是一個梯度下降法)。而deep learning整體上是一個layer-wise的訓練機制。這樣做的原因是因為,如果采用back propagation的機制,對於一個deep network(7層以上),殘差傳播到最前面的層已經變得太小,出現所謂的gradient diffusion(梯度擴散)。這個問題我們接下來討論。



八、Deep learning訓練過程

8.1、傳統神經網絡的訓練方法為什么不能用在深度神經網絡

       BP算法作為傳統訓練多層網絡的典型算法,實際上對僅含幾層網絡,該訓練方法就已經很不理想。深度結構(涉及多個非線性處理單元層)非凸目標代價函數中普遍存在的局部最小是訓練困難的主要來源。

BP算法存在的問題:

(1)梯度越來越稀疏:從頂層越往下,誤差校正信號越來越小;

(2)收斂到局部最小值:尤其是從遠離最優區域開始的時候(隨機值初始化會導致這種情況的發生);

(3)一般,我們只能用有標簽的數據來訓練:但大部分的數據是沒標簽的,而大腦可以從沒有標簽的的數據中學習;


8.2、deep learning訓練過程

       如果對所有層同時訓練,時間復雜度會太高;如果每次訓練一層,偏差就會逐層傳遞。這會面臨跟上面監督學習中相反的問題,會嚴重欠擬合(因為深度網絡的神經元和參數太多了)。

       2006年,hinton提出了在非監督數據上建立多層神經網絡的一個有效方法,簡單的說,分為兩步,一是每次訓練一層網絡,二是調優,使原始表示x向上生成的高級表示r和該高級表示r向下生成的x'盡可能一致。方法是:

1)首先逐層構建單層神經元,這樣每次都是訓練一個單層網絡。

2)當所有層訓練完后,Hinton使用wake-sleep算法進行調優。

       將除最頂層的其它層間的權重變為雙向的,這樣最頂層仍然是一個單層神經網絡,而其它層則變為了圖模型。向上的權重用於“認知”,向下的權重用於“生成”。然后使用Wake-Sleep算法調整所有的權重。讓認知和生成達成一致,也就是保證生成的最頂層表示能夠盡可能正確的復原底層的結點。比如頂層的一個結點表示人臉,那么所有人臉的圖像應該激活這個結點,並且這個結果向下生成的圖像應該能夠表現為一個大概的人臉圖像。Wake-Sleep算法分為醒(wake)和睡(sleep)兩個部分。

1)wake階段:認知過程,通過外界的特征和向上的權重(認知權重)產生每一層的抽象表示(結點狀態),並且使用梯度下降修改層間的下行權重(生成權重)。也就是“如果現實跟我想象的不一樣,改變我的權重使得我想象的東西就是這樣的”。

2)sleep階段:生成過程,通過頂層表示(醒時學得的概念)和向下權重,生成底層的狀態,同時修改層間向上的權重。也就是“如果夢中的景象不是我腦中的相應概念,改變我的認知權重使得這種景象在我看來就是這個概念”。

deep learning訓練過程具體如下:

1)使用自下上升非監督學習(就是從底層開始,一層一層的往頂層訓練):

       采用無標定數據(有標定數據也可)分層訓練各層參數,這一步可以看作是一個無監督訓練過程,是和傳統神經網絡區別最大的部分(這個過程可以看作是feature learning過程):

       具體的,先用無標定數據訓練第一層,訓練時先學習第一層的參數(這一層可以看作是得到一個使得輸出和輸入差別最小的三層神經網絡的隱層),由於模型capacity的限制以及稀疏性約束,使得得到的模型能夠學習到數據本身的結構,從而得到比輸入更具有表示能力的特征;在學習得到第n-1層后,將n-1層的輸出作為第n層的輸入,訓練第n層,由此分別得到各層的參數;

2)自頂向下的監督學習(就是通過帶標簽的數據去訓練,誤差自頂向下傳輸,對網絡進行微調):

       基於第一步得到的各層參數進一步fine-tune整個多層模型的參數,這一步是一個有監督訓練過程;第一步類似神經網絡的隨機初始化初值過程,由於DL的第一步不是隨機初始化,而是通過學習輸入數據的結構得到的,因而這個初值更接近全局最優,從而能夠取得更好的效果;所以deep learning效果好很大程度上歸功於第一步的feature learning過程。

九、Deep Learning的常用模型或者方法

9.1、AutoEncoder自動編碼器

        Deep Learning最簡單的一種方法是利用人工神經網絡的特點,人工神經網絡(ANN)本身就是具有層次結構的系統,如果給定一個神經網絡,我們假設其輸出與輸入是相同的,然后訓練調整其參數,得到每一層中的權重。自然地,我們就得到了輸入I的幾種不同表示(每一層代表一種表示),這些表示就是特征。自動編碼器就是一種盡可能復現輸入信號的神經網絡。為了實現這種復現,自動編碼器就必須捕捉可以代表輸入數據的最重要的因素,就像PCA那樣,找到可以代表原信息的主要成分。

具體過程簡單的說明如下:

1)給定無標簽數據,用非監督學習學習特征:


 
       在我們之前的神經網絡中,如第一個圖,我們輸入的樣本是有標簽的,即(input, target),這樣我們根據當前輸出和target(label)之間的差去改變前面各層的參數,直到收斂。但現在我們只有無標簽數據,也就是右邊的圖。那么這個誤差怎么得到呢?


 
        如上圖,我們將input輸入一個encoder編碼器,就會得到一個code,這個code也就是輸入的一個表示,那么我們怎么知道這個code表示的就是input呢?我們加一個decoder解碼器,這時候decoder就會輸出一個信息,那么如果輸出的這個信息和一開始的輸入信號input是很像的(理想情況下就是一樣的),那很明顯,我們就有理由相信這個code是靠譜的。所以,我們就通過調整encoder和decoder的參數,使得重構誤差最小,這時候我們就得到了輸入input信號的第一個表示了,也就是編碼code了。因為是無標簽數據,所以誤差的來源就是直接重構后與原輸入相比得到。

 
2)通過編碼器產生特征,然后訓練下一層。這樣逐層訓練:

       那上面我們就得到第一層的code,我們的重構誤差最小讓我們相信這個code就是原輸入信號的良好表達了,或者牽強點說,它和原信號是一模一樣的(表達不一樣,反映的是一個東西)。那第二層和第一層的訓練方式就沒有差別了,我們將第一層輸出的code當成第二層的輸入信號,同樣最小化重構誤差,就會得到第二層的參數,並且得到第二層輸入的code,也就是原輸入信息的第二個表達了。其他層就同樣的方法炮制就行了(訓練這一層,前面層的參數都是固定的,並且他們的decoder已經沒用了,都不需要了)。
 
3)有監督微調:

      經過上面的方法,我們就可以得到很多層了。至於需要多少層(或者深度需要多少,這個目前本身就沒有一個科學的評價方法)需要自己試驗調了。每一層都會得到原始輸入的不同的表達。當然了,我們覺得它是越抽象越好了,就像人的視覺系統一樣。

       到這里,這個AutoEncoder還不能用來分類數據,因為它還沒有學習如何去連結一個輸入和一個類。它只是學會了如何去重構或者復現它的輸入而已。或者說,它只是學習獲得了一個可以良好代表輸入的特征,這個特征可以最大程度上代表原輸入信號。那么,為了實現分類,我們就可以在AutoEncoder的最頂的編碼層添加一個分類器(例如羅傑斯特回歸、SVM等),然后通過標准的多層神經網絡的監督訓練方法(梯度下降法)去訓練。

        也就是說,這時候,我們需要將最后層的特征code輸入到最后的分類器,通過有標簽樣本,通過監督學習進行微調,這也分兩種,一個是只調整分類器(黑色部分):

 
       另一種:通過有標簽樣本,微調整個系統:(如果有足夠多的數據,這個是最好的。end-to-end learning端對端學習)
 
       一旦監督訓練完成,這個網絡就可以用來分類了。神經網絡的最頂層可以作為一個線性分類器,然后我們可以用一個更好性能的分類器去取代它。

       在研究中可以發現,如果在原有的特征中加入這些自動學習得到的特征可以大大提高精確度,甚至在分類問題中比目前最好的分類算法效果還要好!

        AutoEncoder存在一些變體,這里簡要介紹下兩個:

Sparse AutoEncoder稀疏自動編碼器:

      當然,我們還可以繼續加上一些約束條件得到新的Deep Learning方法,如:如果在AutoEncoder的基礎上加上L1的Regularity限制(L1主要是約束每一層中的節點中大部分都要為0,只有少數不為0,這就是Sparse名字的來源),我們就可以得到Sparse AutoEncoder法。

 
      如上圖,其實就是限制每次得到的表達code盡量稀疏。因為稀疏的表達往往比其他的表達要有效(人腦好像也是這樣的,某個輸入只是刺激某些神經元,其他的大部分的神經元是受到抑制的)。

Denoising AutoEncoders降噪自動編碼器:

        降噪自動編碼器DA是在自動編碼器的基礎上,訓練數據加入噪聲,所以自動編碼器必須學習去去除這種噪聲而獲得真正的沒有被噪聲污染過的輸入。因此,這就迫使編碼器去學習輸入信號的更加魯棒的表達,這也是它的泛化能力比一般編碼器強的原因。DA可以通過梯度下降算法去訓練。

 

 

參考:http://www.aboutyun.com/thread-16799-1-1.html


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM