四叉樹空間索引原理及其實現


轉自原文 四叉樹空間索引原理及其實現

四叉樹索引的基本思想是將地理空間遞歸划分為不同層次的樹結構。它將已知范圍的空間等分成四個相等的子空間,如此遞歸下去,直至樹的層次達到一定深度或者滿足某種要求后停止分割。四叉樹的結構比較簡單,並且當空間數據對象分布比較均勻時,具有比較高的空間數據插入和查詢效率,因此四叉樹是GIS中常用的空間索引之一。常規四叉樹的結構如圖所示,地理空間對象都存儲在葉子節點上,中間節點以及根節點不存儲地理空間對象。

 

四叉樹示意圖

 

四叉樹對於區域查詢,效率比較高。但如果空間對象分布不均勻,隨着地理空間對象的不斷插入,四叉樹的層次會不斷地加深,將形成一棵嚴重不平衡的四叉樹,那么每次查詢的深度將大大的增多,從而導致查詢效率的急劇下降。

 

本節將介紹一種改進的四叉樹索引結構。四叉樹結構是自頂向下逐步划分的一種樹狀的層次結構。傳統的四叉樹索引存在着以下幾個缺點:

(1)空間實體只能存儲在葉子節點中,中間節點以及根節點不能存儲空間實體信息,隨着空間對象的不斷插入,最終會導致四叉樹樹的層次比較深,在進行空間數據窗口查詢的時候效率會比較低下。

(2)同一個地理實體在四叉樹的分裂過程中極有可能存儲在多個節點中,這樣就導致了索引存儲空間的浪費。

(3)由於地理空間對象可能分布不均衡,這樣會導致常規四叉樹生成一棵極為不平衡的樹,這樣也會造成樹結構的不平衡以及存儲空間的浪費。

相應的改進方法,將地理實體信息存儲在完全包含它的最小矩形節點中,不存儲在它的父節點中,每個地理實體只在樹中存儲一次,避免存儲空間的浪費。首先生成滿四叉樹,避免在地理實體插入時需要重新分配內存,加快插入的速度,最后將空的節點所占內存空間釋放掉。改進后的四叉樹結構如下圖所示。四叉樹的深度一般取經驗值4-7之間為最佳。

 

圖改進的四叉樹結構

 

為了維護空間索引與對存儲在文件或數據庫中的空間數據的一致性,作者設計了如下的數據結構支持四叉樹的操作。

(1)四分區域標識

分別定義了一個平面區域的四個子區域索引號,右上為第一象限0,左上為第二象限1,左下為第三象限2,右下為第四象限3。

typedef enum

{

      UR = 0,// UR第一象限

      UL = 1, // UL為第二象限

      LL = 2, // LL為第三象限

      LR = 3  // LR為第四象限

}QuadrantEnum;

(2)空間對象數據結構

空間對象數據結構是對地理空間對象的近似,在空間索引中,相當一部分都是采用MBR作為近似。

/*空間對象MBR信息*/

typedef struct SHPMBRInfo

{

      int nID;       //空間對象ID號

      MapRect Box;    //空間對象MBR范圍坐標

}SHPMBRInfo;

nID是空間對象的標識號,Box是空間對象的最小外包矩形(MBR)。

(3)四叉樹節點數據結構

四叉樹節點是四叉樹結構的主要組成部分,主要用於存儲空間對象的標識號和MBR,也是四叉樹算法操作的主要部分。

/*四叉樹節點類型結構*/

typedef struct QuadNode

{

      MapRect            Box;                   //節點所代表的矩形區域

      int                nShpCount;        //節點所包含的所有空間對象個數

      SHPMBRInfo* pShapeObj;          //空間對象指針數組

      int         nChildCount;            //子節點個數

      QuadNode *children[4];             //指向節點的四個孩子

}QuadNode;

Box是代表四叉樹對應區域的最小外包矩形,上一層的節點的最小外包矩形包含下一層最小外包矩形區域;nShpCount代表本節點包含的空間對象的個數;pShapeObj代表指向空間對象存儲地址的首地址,同一個節點的空間對象在內存中連續存儲;nChildCount代表節點擁有的子節點的數目;children是指向孩子節點指針的數組。

上述理論部分都都講的差不多了,下面就貼上我的C語言實現版本代碼。

頭文件如下:

    #ifndef __QUADTREE_H_59CAE94A_E937_42AD_AA27_794E467715BB__  
    #define __QUADTREE_H_59CAE94A_E937_42AD_AA27_794E467715BB__  
      
      
      
      
    /* 一個矩形區域的象限划分:: 
     
    UL(1)   |    UR(0) 
    ----------|----------- 
    LL(2)   |    LR(3) 
    以下對該象限類型的枚舉 
    */  
    typedef enum  
    {  
        UR = 0,  
        UL = 1,  
        LL = 2,  
        LR = 3  
    }QuadrantEnum;  
      
    /*空間對象MBR信息*/  
    typedef struct SHPMBRInfo  
    {  
        int nID;        //空間對象ID號  
        MapRect Box;    //空間對象MBR范圍坐標  
    }SHPMBRInfo;  
      
    /* 四叉樹節點類型結構 */  
    typedef struct QuadNode  
    {  
        MapRect     Box;            //節點所代表的矩形區域  
        int         nShpCount;      //節點所包含的所有空間對象個數  
        SHPMBRInfo* pShapeObj;      //空間對象指針數組  
        int     nChildCount;        //子節點個數  
        QuadNode  *children[4];     //指向節點的四個孩子   
    }QuadNode;  
      
    /* 四叉樹類型結構 */  
    typedef struct quadtree_t  
    {  
        QuadNode  *root;  
        int         depth;           // 四叉樹的深度                      
    }QuadTree;  
      
      
        //初始化四叉樹節點  
        QuadNode *InitQuadNode();  
      
        //層次創建四叉樹方法(滿四叉樹)  
        void CreateQuadTree(int depth,GeoLayer *poLayer,QuadTree* pQuadTree);  
      
        //創建各個分支  
        void CreateQuadBranch(int depth,MapRect &rect,QuadNode** node);  
      
        //構建四叉樹空間索引  
        void BuildQuadTree(GeoLayer*poLayer,QuadTree* pQuadTree);  
      
        //四叉樹索引查詢(矩形查詢)  
        void SearchQuadTree(QuadNode* node,MapRect &queryRect,vector<int>& ItemSearched);  
      
        //四叉樹索引查詢(矩形查詢)並行查詢  
        void SearchQuadTreePara(vector<QuadNode*> resNodes,MapRect &queryRect,vector<int>& ItemSearched);  
      
        //四叉樹的查詢(點查詢)  
        void PtSearchQTree(QuadNode* node,double cx,double cy,vector<int>& ItemSearched);  
      
        //將指定的空間對象插入到四叉樹中  
        void Insert(long key,MapRect &itemRect,QuadNode* pNode);  
      
        //將指定的空間對象插入到四叉樹中  
        void InsertQuad(long key,MapRect &itemRect,QuadNode* pNode);  
      
        //將指定的空間對象插入到四叉樹中  
        void InsertQuad2(long key,MapRect &itemRect,QuadNode* pNode);  
      
        //判斷一個節點是否是葉子節點  
        bool IsQuadLeaf(QuadNode* node);  
      
        //刪除多余的節點  
        bool DelFalseNode(QuadNode* node);  
      
        //四叉樹遍歷(所有要素)  
        void TraversalQuadTree(QuadNode* quadTree,vector<int>& resVec);  
      
        //四叉樹遍歷(所有節點)  
        void TraversalQuadTree(QuadNode* quadTree,vector<QuadNode*>& arrNode);  
      
        //釋放樹的內存空間  
        void ReleaseQuadTree(QuadNode** quadTree);  
      
        //計算四叉樹所占的字節的大小  
        long CalByteQuadTree(QuadNode* quadTree,long& nSize);  
      
      
    #endif  
View Code

源文件如下:

    #include "QuadTree.h"  
      
      
    QuadNode *InitQuadNode()  
    {  
        QuadNode *node = new QuadNode;  
        node->Box.maxX = 0;  
        node->Box.maxY = 0;  
        node->Box.minX = 0;  
        node->Box.minY = 0;  
      
        for (int i = 0; i < 4; i ++)  
        {  
            node->children[i] = NULL;  
        }  
        node->nChildCount = 0;  
        node->nShpCount = 0;  
        node->pShapeObj = NULL;  
      
        return node;  
    }  
      
    void CreateQuadTree(int depth,GeoLayer *poLayer,QuadTree* pQuadTree)  
    {  
        pQuadTree->depth = depth;  
      
        GeoEnvelope env;    //整個圖層的MBR  
        poLayer->GetExtent(&env);  
          
        MapRect rect;  
        rect.minX = env.MinX;  
        rect.minY = env.MinY;  
        rect.maxX = env.MaxX;  
        rect.maxY = env.MaxY;  
          
        //創建各個分支  
        CreateQuadBranch(depth,rect,&(pQuadTree->root));  
      
        int nCount = poLayer->GetFeatureCount();  
        GeoFeature **pFeatureClass = new GeoFeature*[nCount];  
        for (int i = 0; i < poLayer->GetFeatureCount(); i ++)  
        {  
            pFeatureClass[i] = poLayer->GetFeature(i);   
        }  
      
        //插入各個要素  
        GeoEnvelope envObj; //空間對象的MBR  
        //#pragma omp parallel for  
        for (int i = 0; i < nCount; i ++)  
        {  
            pFeatureClass[i]->GetGeometry()->getEnvelope(&envObj);  
            rect.minX = envObj.MinX;  
            rect.minY = envObj.MinY;  
            rect.maxX = envObj.MaxX;  
            rect.maxY = envObj.MaxY;  
            InsertQuad(i,rect,pQuadTree->root);  
        }  
      
        //DelFalseNode(pQuadTree->root);  
    }  
      
    void CreateQuadBranch(int depth,MapRect &rect,QuadNode** node)  
    {  
        if (depth != 0)  
        {  
            *node = InitQuadNode(); //創建樹根  
            QuadNode *pNode = *node;  
            pNode->Box = rect;  
            pNode->nChildCount = 4;  
      
            MapRect boxs[4];  
            pNode->Box.Split(boxs,boxs+1,boxs+2,boxs+3);  
            for (int i = 0; i < 4; i ++)  
            {  
                //創建四個節點並插入相應的MBR  
                pNode->children[i] = InitQuadNode();  
                pNode->children[i]->Box = boxs[i];  
      
                CreateQuadBranch(depth-1,boxs[i],&(pNode->children[i]));  
            }  
        }  
    }  
      
    void BuildQuadTree(GeoLayer *poLayer,QuadTree* pQuadTree)  
    {  
        assert(poLayer);  
        GeoEnvelope env;    //整個圖層的MBR  
        poLayer->GetExtent(&env);  
        pQuadTree->root = InitQuadNode();  
      
        QuadNode* rootNode = pQuadTree->root;  
      
        rootNode->Box.minX = env.MinX;  
        rootNode->Box.minY = env.MinY;  
        rootNode->Box.maxX = env.MaxX;  
        rootNode->Box.maxY = env.MaxY;  
      
        //設置樹的深度(   根據等比數列的求和公式)  
        //pQuadTree->depth = log(poLayer->GetFeatureCount()*3/8.0+1)/log(4.0);  
        int nCount = poLayer->GetFeatureCount();  
      
        MapRect rect;  
        GeoEnvelope envObj; //空間對象的MBR  
        for (int i = 0; i < nCount; i ++)  
        {  
            poLayer->GetFeature(i)->GetGeometry()->getEnvelope(&envObj);  
            rect.minX = envObj.MinX;  
            rect.minY = envObj.MinY;  
            rect.maxX = envObj.MaxX;  
            rect.maxY = envObj.MaxY;  
            InsertQuad2(i,rect,rootNode);  
        }  
      
        DelFalseNode(pQuadTree->root);  
    }  
      
    void SearchQuadTree(QuadNode* node,MapRect &queryRect,vector<int>& ItemSearched)  
    {  
        assert(node);  
      
        //int coreNum = omp_get_num_procs();  
        //vector<int> * pResArr = new vector<int>[coreNum];  
      
        if (NULL != node)  
        {  
            for (int i = 0; i < node->nShpCount; i ++)  
            {  
                if (queryRect.Contains(node->pShapeObj[i].Box)  
                    || queryRect.Intersects(node->pShapeObj[i].Box))  
                {  
                    ItemSearched.push_back(node->pShapeObj[i].nID);  
                }  
            }  
      
            //並行搜索四個孩子節點  
            /*#pragma omp parallel sections 
            { 
                #pragma omp section 
                if ((node->children[0] != NULL) &&  
                    (node->children[0]->Box.Contains(queryRect) 
                    || node->children[0]->Box.Intersects(queryRect))) 
                { 
                    int tid = omp_get_thread_num(); 
                    SearchQuadTree(node->children[0],queryRect,pResArr[tid]); 
                } 
     
                #pragma omp section 
                if ((node->children[1] != NULL) &&  
                    (node->children[1]->Box.Contains(queryRect) 
                    || node->children[1]->Box.Intersects(queryRect))) 
                { 
                    int tid = omp_get_thread_num(); 
                    SearchQuadTree(node->children[1],queryRect,pResArr[tid]); 
                } 
     
                #pragma omp section 
                if ((node->children[2] != NULL) &&  
                    (node->children[2]->Box.Contains(queryRect) 
                    || node->children[2]->Box.Intersects(queryRect))) 
                { 
                    int tid = omp_get_thread_num(); 
                    SearchQuadTree(node->children[2],queryRect,pResArr[tid]); 
                } 
     
                #pragma omp section 
                if ((node->children[3] != NULL) &&  
                    (node->children[3]->Box.Contains(queryRect) 
                    || node->children[3]->Box.Intersects(queryRect))) 
                { 
                    int tid = omp_get_thread_num(); 
                    SearchQuadTree(node->children[3],queryRect,pResArr[tid]); 
                } 
            }*/  
            for (int i = 0; i < 4; i ++)  
            {  
                if ((node->children[i] != NULL) &&   
                    (node->children[i]->Box.Contains(queryRect)  
                    || node->children[i]->Box.Intersects(queryRect)))  
                {  
                    SearchQuadTree(node->children[i],queryRect,ItemSearched);  
                    //node = node->children[i];  //非遞歸  
                }  
            }  
        }  
      
        /*for (int i = 0 ; i < coreNum; i ++) 
        { 
            ItemSearched.insert(ItemSearched.end(),pResArr[i].begin(),pResArr[i].end()); 
        }*/  
      
    }  
      
    void SearchQuadTreePara(vector<QuadNode*> resNodes,MapRect &queryRect,vector<int>& ItemSearched)  
    {  
        int coreNum = omp_get_num_procs();  
        omp_set_num_threads(coreNum);  
        vector<int>* searchArrs = new vector<int>[coreNum];  
        for (int i = 0; i < coreNum; i ++)  
        {  
            searchArrs[i].clear();  
        }  
      
        #pragma omp parallel for  
        for (int i = 0; i < resNodes.size(); i ++)  
        {  
            int tid = omp_get_thread_num();  
            for (int j = 0; j < resNodes[i]->nShpCount; j ++)  
            {  
                if (queryRect.Contains(resNodes[i]->pShapeObj[j].Box)  
                    || queryRect.Intersects(resNodes[i]->pShapeObj[j].Box))  
                {  
                    searchArrs[tid].push_back(resNodes[i]->pShapeObj[j].nID);  
                }  
            }  
        }  
      
        for (int i = 0; i < coreNum; i ++)  
        {  
            ItemSearched.insert(ItemSearched.end(),  
                searchArrs[i].begin(),searchArrs[i].end());  
        }  
      
        delete [] searchArrs;  
        searchArrs = NULL;  
    }  
      
    void PtSearchQTree(QuadNode* node,double cx,double cy,vector<int>& ItemSearched)  
    {  
        assert(node);  
        if (node->nShpCount >0)       //節點            
        {  
            for (int i = 0; i < node->nShpCount; i ++)  
            {  
                if (node->pShapeObj[i].Box.IsPointInRect(cx,cy))  
                {  
                    ItemSearched.push_back(node->pShapeObj[i].nID);  
                }  
            }  
        }  
      
        else if (node->nChildCount >0)                //節點  
        {  
            for (int i = 0; i < 4; i ++)  
            {  
                if (node->children[i]->Box.IsPointInRect(cx,cy))  
                {  
                    PtSearchQTree(node->children[i],cx,cy,ItemSearched);  
                }  
            }  
        }  
      
        //找出重復元素的位置  
        sort(ItemSearched.begin(),ItemSearched.end());  //先排序,默認升序  
        vector<int>::iterator unique_iter =   
            unique(ItemSearched.begin(),ItemSearched.end());  
        ItemSearched.erase(unique_iter,ItemSearched.end());  
    }  
      
    void Insert(long key, MapRect &itemRect,QuadNode* pNode)  
    {  
        QuadNode *node = pNode;     //保留根節點副本  
        SHPMBRInfo pShpInfo;  
          
        //節點有孩子  
        if (0 < node->nChildCount)  
        {  
            for (int i = 0; i < 4; i ++)  
            {    
                //如果包含或相交,則將節點插入到此節點  
                if (node->children[i]->Box.Contains(itemRect)  
                    || node->children[i]->Box.Intersects(itemRect))  
                {  
                    //node = node->children[i];  
                    Insert(key,itemRect,node->children[i]);  
                }  
            }  
        }  
      
        //如果當前節點存在一個子節點時  
        else if (1 == node->nShpCount)  
        {  
            MapRect boxs[4];  
            node->Box.Split(boxs,boxs+1,boxs+2,boxs+3);  
      
            //創建四個節點並插入相應的MBR  
            node->children[UR] = InitQuadNode();  
            node->children[UL] = InitQuadNode();  
            node->children[LL] = InitQuadNode();  
            node->children[LR] = InitQuadNode();  
      
            node->children[UR]->Box = boxs[0];  
            node->children[UL]->Box = boxs[1];  
            node->children[LL]->Box = boxs[2];  
            node->children[LR]->Box = boxs[3];  
            node->nChildCount = 4;  
      
            for (int i = 0; i < 4; i ++)  
            {    
                //將當前節點中的要素移動到相應的子節點中  
                for (int j = 0; j < node->nShpCount; j ++)  
                {  
                    if (node->children[i]->Box.Contains(node->pShapeObj[j].Box)  
                        || node->children[i]->Box.Intersects(node->pShapeObj[j].Box))  
                    {  
                        node->children[i]->nShpCount += 1;  
                        node->children[i]->pShapeObj =   
                            (SHPMBRInfo*)malloc(node->children[i]->nShpCount*sizeof(SHPMBRInfo));  
                          
                        memcpy(node->children[i]->pShapeObj,&(node->pShapeObj[j]),sizeof(SHPMBRInfo));  
      
                        free(node->pShapeObj);  
                        node->pShapeObj = NULL;  
                        node->nShpCount = 0;  
                    }  
                }  
            }  
      
            for (int i = 0; i < 4; i ++)  
            {    
                //如果包含或相交,則將節點插入到此節點  
                if (node->children[i]->Box.Contains(itemRect)  
                    || node->children[i]->Box.Intersects(itemRect))  
                {  
                    if (node->children[i]->nShpCount == 0)     //如果之前沒有節點  
                    {  
                        node->children[i]->nShpCount += 1;  
                        node->pShapeObj =   
                            (SHPMBRInfo*)malloc(sizeof(SHPMBRInfo)*node->children[i]->nShpCount);  
                    }  
                    else if (node->children[i]->nShpCount > 0)  
                    {  
                        node->children[i]->nShpCount += 1;  
                        node->children[i]->pShapeObj =   
                            (SHPMBRInfo *)realloc(node->children[i]->pShapeObj,  
                            sizeof(SHPMBRInfo)*node->children[i]->nShpCount);  
                    }  
      
                    pShpInfo.Box = itemRect;  
                    pShpInfo.nID = key;  
                    memcpy(node->children[i]->pShapeObj,  
                        &pShpInfo,sizeof(SHPMBRInfo));  
                }  
            }  
        }  
      
        //當前節點沒有空間對象  
        else if (0 == node->nShpCount)  
        {  
            node->nShpCount += 1;  
            node->pShapeObj =   
                (SHPMBRInfo*)malloc(sizeof(SHPMBRInfo)*node->nShpCount);  
      
            pShpInfo.Box = itemRect;  
            pShpInfo.nID = key;  
            memcpy(node->pShapeObj,&pShpInfo,sizeof(SHPMBRInfo));  
        }  
    }  
      
    void InsertQuad(long key,MapRect &itemRect,QuadNode* pNode)  
    {  
        assert(pNode != NULL);  
      
        if (!IsQuadLeaf(pNode))    //非葉子節點  
        {  
            int nCorver = 0;        //跨越的子節點個數  
            int iIndex = -1;        //被哪個子節點完全包含的索引號  
            for (int i = 0; i < 4; i ++)  
            {  
                if (pNode->children[i]->Box.Contains(itemRect)  
                    && pNode->Box.Contains(itemRect))  
                {  
                    nCorver += 1;  
                    iIndex = i;  
                }  
            }  
      
            //如果被某一個子節點包含,則進入該子節點  
            if (/*pNode->Box.Contains(itemRect) ||  
                pNode->Box.Intersects(itemRect)*/1 <= nCorver)  
            {   
                InsertQuad(key,itemRect,pNode->children[iIndex]);  
            }  
      
            //如果跨越了多個子節點,直接放在這個節點中  
            else if (nCorver == 0)  
            {  
                if (pNode->nShpCount == 0)    //如果之前沒有節點  
                {  
                    pNode->nShpCount += 1;  
                    pNode->pShapeObj =   
                        (SHPMBRInfo*)malloc(sizeof(SHPMBRInfo)*pNode->nShpCount);  
                }  
                else  
                {  
                    pNode->nShpCount += 1;  
                    pNode->pShapeObj =   
                        (SHPMBRInfo *)realloc(pNode->pShapeObj,sizeof(SHPMBRInfo)*pNode->nShpCount);  
                }  
      
                SHPMBRInfo pShpInfo;  
                pShpInfo.Box = itemRect;  
                pShpInfo.nID = key;  
                memcpy(pNode->pShapeObj+pNode->nShpCount-1,&pShpInfo,sizeof(SHPMBRInfo));  
            }  
        }  
      
        //如果是葉子節點,直接放進去  
        else if (IsQuadLeaf(pNode))  
        {  
            if (pNode->nShpCount == 0)    //如果之前沒有節點  
            {  
                pNode->nShpCount += 1;  
                pNode->pShapeObj =   
                    (SHPMBRInfo*)malloc(sizeof(SHPMBRInfo)*pNode->nShpCount);  
            }  
            else  
            {  
                pNode->nShpCount += 1;  
                pNode->pShapeObj =   
                    (SHPMBRInfo *)realloc(pNode->pShapeObj,sizeof(SHPMBRInfo)*pNode->nShpCount);  
            }  
      
            SHPMBRInfo pShpInfo;  
            pShpInfo.Box = itemRect;  
            pShpInfo.nID = key;  
            memcpy(pNode->pShapeObj+pNode->nShpCount-1,&pShpInfo,sizeof(SHPMBRInfo));  
        }  
    }  
      
    void InsertQuad2(long key,MapRect &itemRect,QuadNode* pNode)  
    {  
        QuadNode *node = pNode;     //保留根節點副本  
        SHPMBRInfo pShpInfo;  
      
        //節點有孩子  
        if (0 < node->nChildCount)  
        {  
            for (int i = 0; i < 4; i ++)  
            {    
                //如果包含或相交,則將節點插入到此節點  
                if (node->children[i]->Box.Contains(itemRect)  
                    || node->children[i]->Box.Intersects(itemRect))  
                {  
                    //node = node->children[i];  
                    Insert(key,itemRect,node->children[i]);  
                }  
            }  
        }  
      
        //如果當前節點存在一個子節點時  
        else if (0 == node->nChildCount)  
        {  
            MapRect boxs[4];  
            node->Box.Split(boxs,boxs+1,boxs+2,boxs+3);  
      
            int cnt = -1;  
            for (int i = 0; i < 4; i ++)  
            {    
                //如果包含或相交,則將節點插入到此節點  
                if (boxs[i].Contains(itemRect))  
                {  
                    cnt = i;  
                }  
            }  
      
            //如果有一個矩形包含此對象,則創建四個孩子節點  
            if (cnt > -1)  
            {  
                for (int i = 0; i < 4; i ++)  
                {  
                    //創建四個節點並插入相應的MBR  
                    node->children[i] = InitQuadNode();  
                    node->children[i]->Box = boxs[i];  
                }  
                node->nChildCount = 4;  
                InsertQuad2(key,itemRect,node->children[cnt]);   //遞歸  
            }  
      
            //如果都不包含,則直接將對象插入此節點  
            if (cnt == -1)  
            {  
                if (node->nShpCount == 0)     //如果之前沒有節點  
                {  
                    node->nShpCount += 1;  
                    node->pShapeObj =   
                        (SHPMBRInfo*)malloc(sizeof(SHPMBRInfo)*node->nShpCount);  
                }  
                else if (node->nShpCount > 0)  
                {  
                    node->nShpCount += 1;  
                    node->pShapeObj =   
                        (SHPMBRInfo *)realloc(node->pShapeObj,  
                        sizeof(SHPMBRInfo)*node->nShpCount);  
                }  
      
                pShpInfo.Box = itemRect;  
                pShpInfo.nID = key;  
                memcpy(node->pShapeObj,  
                    &pShpInfo,sizeof(SHPMBRInfo));  
            }  
        }  
      
        //當前節點沒有空間對象  
        /*else if (0 == node->nShpCount) 
        { 
            node->nShpCount += 1; 
            node->pShapeObj =  
                (SHPMBRInfo*)malloc(sizeof(SHPMBRInfo)*node->nShpCount); 
     
            pShpInfo.Box = itemRect; 
            pShpInfo.nID = key; 
            memcpy(node->pShapeObj,&pShpInfo,sizeof(SHPMBRInfo)); 
        }*/  
    }  
      
    bool IsQuadLeaf(QuadNode* node)  
    {  
        if (NULL == node)  
        {  
            return 1;  
        }  
        for (int i = 0; i < 4; i ++)  
        {  
            if (node->children[i] != NULL)  
            {  
                return 0;  
            }  
        }  
      
        return 1;  
    }  
      
    bool DelFalseNode(QuadNode* node)  
    {  
        //如果沒有子節點且沒有要素  
        if (node->nChildCount ==0 && node->nShpCount == 0)  
        {  
            ReleaseQuadTree(&node);  
        }  
      
        //如果有子節點  
        else if (node->nChildCount > 0)  
        {  
            for (int i = 0; i < 4; i ++)  
            {  
                DelFalseNode(node->children[i]);  
            }  
        }  
      
        return 1;  
    }  
      
    void TraversalQuadTree(QuadNode* quadTree,vector<int>& resVec)  
    {  
        QuadNode *node = quadTree;  
        int i = 0;   
        if (NULL != node)  
        {  
            //將本節點中的空間對象存儲數組中  
            for (i = 0; i < node->nShpCount; i ++)  
            {  
                resVec.push_back((node->pShapeObj+i)->nID);  
            }  
      
            //遍歷孩子節點  
            for (i = 0; i < node->nChildCount; i ++)  
            {  
                if (node->children[i] != NULL)  
                {  
                    TraversalQuadTree(node->children[i],resVec);  
                }  
            }  
        }  
      
    }  
      
    void TraversalQuadTree(QuadNode* quadTree,vector<QuadNode*>& arrNode)  
    {  
        deque<QuadNode*> nodeQueue;  
        if (quadTree != NULL)  
        {  
            nodeQueue.push_back(quadTree);  
            while (!nodeQueue.empty())  
            {  
                QuadNode* queueHead = nodeQueue.at(0);  //取隊列頭結點  
                arrNode.push_back(queueHead);  
                nodeQueue.pop_front();  
                for (int i = 0; i < 4; i ++)  
                {  
                    if (queueHead->children[i] != NULL)  
                    {  
                        nodeQueue.push_back(queueHead->children[i]);  
                    }  
                }  
            }  
        }  
    }  
      
    void ReleaseQuadTree(QuadNode** quadTree)  
    {  
        int i = 0;  
        QuadNode* node = *quadTree;  
        if (NULL == node)  
        {  
            return;  
        }  
      
        else  
        {  
            for (i = 0; i < 4; i ++)  
            {   
                ReleaseQuadTree(&node->children[i]);  
            }  
            free(node);  
            node = NULL;  
        }  
      
        node = NULL;  
    }  
      
    long CalByteQuadTree(QuadNode* quadTree,long& nSize)  
    {  
        if (quadTree != NULL)  
        {  
            nSize += sizeof(QuadNode)+quadTree->nChildCount*sizeof(SHPMBRInfo);  
            for (int i = 0; i < 4; i ++)  
            {  
                if (quadTree->children[i] != NULL)  
                {  
                    nSize += CalByteQuadTree(quadTree->children[i],nSize);  
                }  
            }  
        }  
      
        return 1;  
    }  
View Code

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM