機器學習七--回歸--多元線性回歸Multiple Linear Regression


一、不包含分類型變量

from numpy import genfromtxt
import numpy as np
from sklearn import datasets,linear_model
path=r'D:\daacheng\Python\PythonCode\machineLearning\Delivery.csv'
data=genfromtxt(path,delimiter=',')
print(data)
x=data[:,:-1]
y=data[:,-1]
regr=linear_model.LinearRegression()#創建模型
regr.fit(x,y)
#y=b0+b1*x1+b2*x2
print(regr.coef_)#b1,b2
print(regr.intercept_)#b0
Xpred=[[102,6]]
Ypred=regr.predict(Xpred)#預測
print(Ypred)

二、包含分類型變量

 

轉換后:

 

import numpy as np
from sklearn import datasets,linear_model
from numpy import genfromtxt
path=r'D:\daacheng\Python\PythonCode\machineLearning\Delivery_Dummy.csv'
data=genfromtxt(path,delimiter=',')
data=data[1:]
x=data[:,:-1]
y=data[:,-1]
print(x)
print(y)
regr=linear_model.LinearRegression()
regr.fit(x,y)
print(regr.coef_)#b1,b2,b3,b4,b5
print(regr.intercept_)#b0


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM