1.先安裝python(類似於java中的jdk)
- 從官網下載python,python2和python3語法有點不同,選自己熟悉的即可(這有個坑,tensorflow目前不支持python3.7及以上的版本,所以建議,直接下載python3.6就ok了)
- 點擊install for all users,然后路徑最好直接放在c盤下面(查找文件夾方便)
- 安裝的時候注意選擇add enviriment variables(這樣就不用自己配置環境變量了,美滋滋)
2.安裝pycharm(這個是python的IDE,也可以選用jupyter notebook)
- 官網下載pycharm
- 激活碼 http://idea.imsxm.com
3.安裝numpy,scipy,panadas,matplotlib,sciki-learn等機器學習庫
(在線安裝方式)
- 1.直接打開windows命令行界面
- 2.輸入python,啟動python編譯器
- 3.輸入pip install +包名(如numpy,scipy,pandas,matplotlib,keras,tensorflow,scikit-learn),就可以自動安裝了
(離線安裝方式,先下載安裝包,再安裝)
下載地址:http://www.lfd.uci.edu/~gohlke/pythonlibs/#matplotlib (庫名中帶有cp的標識的是版本號,如果python是3.6的,則cp后面數字應該為36)
NumPy-數學計算基礎庫:N維數組、線性代數計算、傅立葉變換、隨機數等。
SciPy-數值計算庫:線性代數、擬合與優化、插值、數值積分、稀疏矩陣、圖像處理、統計等。
Pandas-數據分析庫:數據導入、整理、處理、分析等。
matplotlib-會圖庫:繪制二維圖形和圖表
scikit-learn:Simple and efficient tools for data mining and data analysis
Accessible to everybody, and reusable in various contexts
Built on NumPy, SciPy, and matplotlib
Open source, commercially usable - BSD license
- 安裝如下:
- 在第一步安裝好的文件夾python中,新建一個Scripts的文件夾
- 把下載的五個類庫放到該文件夾中
- 打開windows命令行,用命令行定位到該文件夾:cd c:\python36\Scripts
- 按順序安裝五個類庫,安裝命令為:pip install +下載的類庫名字;如果想卸載的話,命令為:pip uninstall+下載的類庫名字
4.用pycharm跑程序,測試是否安裝成功
# Code source: Jaques Grobler
# License: BSD 3 clause
#linear_model
import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets, linear_model
from sklearn.metrics import mean_squared_error, r2_score
# Load the diabetes dataset
diabetes = datasets.load_diabetes()
# Use only one feature
diabetes_X = diabetes.data[:, np.newaxis, 2]
# Split the data into training/testing sets
diabetes_X_train = diabetes_X[:-20]
diabetes_X_test = diabetes_X[-20:]
# Split the targets into training/testing sets
diabetes_y_train = diabetes.target[:-20]
diabetes_y_test = diabetes.target[-20:]
# Create linear regression object
regr = linear_model.LinearRegression()
# Train the model using the training sets
regr.fit(diabetes_X_train, diabetes_y_train)
# Make predictions using the testing set
diabetes_y_pred = regr.predict(diabetes_X_test)
# The coefficients
print('Coefficients: \n', regr.coef_)
# The mean squared error
print("Mean squared error: %.2f"
% mean_squared_error(diabetes_y_test, diabetes_y_pred))
# Explained variance score: 1 is perfect prediction
print('Variance score: %.2f' % r2_score(diabetes_y_test, diabetes_y_pred))
# Plot outputs
plt.scatter(diabetes_X_test, diabetes_y_test, color='black')
plt.plot(diabetes_X_test, diabetes_y_pred, color='blue', linewidth=3)
plt.xticks(())
plt.yticks(())
plt.show()
如果安裝成功,運行結果圖如下: