sklearn.preprocessing OneHotEncoder——僅僅是數值型字段才可以,如果是字符類型字段則不能直接搞定


 

>>> from sklearn.preprocessing import OneHotEncoder
>>> enc = OneHotEncoder()

>>> enc.fit([[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]]) >>> enc.n_values_ array([2, 3, 4]) >>> enc.feature_indices_ array([0, 2, 5, 9]) >>> enc.transform([[0, 1, 1]]).toarray() array([[ 1., 0., 0., 1., 0., 0., 1., 0., 0.]])


注意:僅僅是數值型字段才可以,如果是字符類型字段則不能直接搞定

需要使用pandas get_dummies搞定

例如:

Using the get_dummies will create a new column for every unique string in a certain column:使用get_dummies進行one-hot編碼

  1. pd.get_dummies(df)  


還可以:
import pandas as pd
import numpy as np
from sklearn_pandas import DataFrameMapper
from sklearn.preprocessing import OneHotEncoder

data = pd.DataFrame({'text':['aaa', 'bbb'], 'number_1':[1, 1], 'number_2':[2, 2]})

#    number_1  number_2 text
# 0         1         2  aaa
# 1         1         2  bbb

# SomeEncoder here must be any encoder which will help you to get
# numerical representation from text column
mapper = DataFrameMapper([
    ('text', SomeEncoder),
    (['number_1', 'number_2'], OneHotEncoder())
])
mapper.fit_transform(data)

 

 




免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM