- 上午把tensorflow安裝好了,下午和晚上裝caffe的確很費勁。
- 默認CUDA,cuDNN可以用了
- caffe官方安裝教程
- 有些安裝順序自己也不清楚,簡直就是碰運氣
1. 安裝之前依賴項
General dependencies
sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler sudo apt-get install --no-install-recommends libboost-all-dev
安裝matlab見后面:
為什么需要安裝Matlab?
caffe有Matlab的接口,因此如果需要使用Matlab調用caffe,進行編程,就需要安裝Matlab。如果你覺得使用C或Python編程比較難,就請安裝Matlab。當然如果不需要,並且后面不會編譯caffe生成Matlab的接口,就不需要安裝Matlab了。這個純粹根據個人需求來定。
為什么需要安裝OpenCV?
caffe是用來做深度學習的,深度學習的一大應用對象就是圖像和視頻。而OpenCV是目前最火的開源計算機視覺庫,非常多的項目多用到了OpenCV,當然caffe也依賴OpenCV。所以,需要安裝OpenCV,否則無法使用caffe哦
OpenCV的版本和cuda的版本最好匹配。這樣子安排的目的是為了減少錯誤出現的概率
2.OpeCV安裝
從官網(http://opencv.org/downloads.html)下載Opencv,並將其解壓到你要安裝的位置,假設解壓到了/home/opencv。 安裝前准備,創建編譯文件夾:
cd ~/opencv
mkdir build
cd build
配置:
cmake -D CMAKE_BUILD_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local ..
編譯:
make -j8 #-j8表示並行計算,根據自己電腦的配置進行設置,配置比較低的電腦可以將數字改小或不使用,直接輸make。
以上只是將opencv編譯成功,還沒將opencv安裝,需要運行下面指令進行安裝:
sudo make install
問題:由於CUDA 8.0不支持OpenCV的 GraphCut 算法,可能出現以下錯誤:
/home/dsp/opencv-3.1.0/modules/core/include/opencv2/core/private.cuda.hpp:165:52: note: in definition of macro ‘nppSafeCall’ #define nppSafeCall(expr) cv::cuda::checkNppError(expr, __FILE__, __LINE__, CV_Func) ^ modules/cudalegacy/CMakeFiles/opencv_cudalegacy.dir/build.make:146: recipe for target 'modules/cudalegacy/CMakeFiles/opencv_cudalegacy.dir/src/graphcuts.cpp.o' failed make[2]: *** [modules/cudalegacy/CMakeFiles/opencv_cudalegacy.dir/src/graphcuts.cpp.o] Error 1 make[2]: *** 正在等待未完成的任務.... CMakeFiles/Makefile2:9226: recipe for target 'modules/cudalegacy/CMakeFiles/opencv_cudalegacy.dir/all' failed make[1]: *** [modules/cudalegacy/CMakeFiles/opencv_cudalegacy.dir/all] Error 2 make[1]: *** 正在等待未完成的任務.... [ 92%] Linking CXX shared library ../../lib/libopencv_photo.so [ 92%] Built target opencv_photo Makefile:160: recipe for target 'all' failed make: *** [all] Error 2
進入opencv-3.1.0/modules/cudalegacy/src/目錄,修改graphcuts.cpp文件,將:
#include "precomp.hpp" #if !defined (HAVE_CUDA) || defined (CUDA_DISABLER) 改為 #include "precomp.hpp" #if !defined (HAVE_CUDA) || defined (CUDA_DISABLER) || (CUDART_VERSION >= 8000) 然后make編譯就可以了
- 編譯和安裝完成
裝BLAS
這里可以選擇(ATLAS,MKL或者OpenBLAS):不知道這個,下載有問題,所以就沒有搞這個,但是makefile.config文件里面有配置
MKL首先下載並安裝英特爾® 數學內核庫 Linux* 版MKL(Intel(R) Parallel Studio XE Cluster Edition for Linux 2016),下載鏈接是:https://software.intel.com/en-us/qualify-for-free-software/student, 使用學生身份(郵件 + 學校)下載Student版,填好各種信息,可以直接下載,同時會給你一個郵件告知序列號。
后面就直接:sudo apt-get install libatlas-base-dev -y
sudo apt-get install libatlas-base-dev
3.MATLAB2017a安裝
- utuntu2017a安裝:http://blog.csdn.net/u011713358/article/details/69659265
- 安裝過程很詳細,按照流程就可以按照成功。
4.安裝caffe
(1)將終端cd到要安裝caffe的位置。 (2)從github上獲取caffe: git clone https://github.com/BVLC/caffe.git 注意:若沒有安裝Git,需要先安裝Git: sudo apt-get install git (3)因為make指令只能make Makefile.config文件,而Makefile.config.example是caffe給出的makefile例子,因此,首先將Makefile.config.example的內容復制到Makefile.config: sudo cp Makefile.config.example Makefile.config (4)打開並修改配置文件: sudo gedit Makefile.config #打開Makefile.config文件
- 自己按照改了一下,里面有寫需要注意
## Refer to http://caffe.berkeleyvision.org/installation.html # Contributions simplifying and improving our build system are welcome! # cuDNN acceleration switch (uncomment to build with cuDNN). USE_CUDNN := 1 # CPU-only switch (uncomment to build without GPU support). # CPU_ONLY := 1 # uncomment to disable IO dependencies and corresponding data layers USE_OPENCV := 1 # USE_LEVELDB := 0 # USE_LMDB := 0 # uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary) # You should not set this flag if you will be reading LMDBs with any # possibility of simultaneous read and write # ALLOW_LMDB_NOLOCK := 1 # Uncomment if you're using OpenCV 3 OPENCV_VERSION := 3 # To customize your choice of compiler, uncomment and set the following. # N.B. the default for Linux is g++ and the default for OSX is clang++ # CUSTOM_CXX := g++ # CUDA directory contains bin/ and lib/ directories that we need. CUDA_DIR := /usr/local/cuda # On Ubuntu 14.04, if cuda tools are installed via # "sudo apt-get install nvidia-cuda-toolkit" then use this instead: # CUDA_DIR := /usr # CUDA architecture setting: going with all of them. # For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility. # For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility. CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \ -gencode arch=compute_20,code=sm_21 \ -gencode arch=compute_30,code=sm_30 \ -gencode arch=compute_35,code=sm_35 \ -gencode arch=compute_50,code=sm_50 \ -gencode arch=compute_52,code=sm_52 \ -gencode arch=compute_60,code=sm_60 \ -gencode arch=compute_61,code=sm_61 \ -gencode arch=compute_61,code=compute_61 # BLAS choice: # atlas for ATLAS (default) # mkl for MKL # open for OpenBlas BLAS := atlas # Custom (MKL/ATLAS/OpenBLAS) include and lib directories. # Leave commented to accept the defaults for your choice of BLAS # (which should work)! # BLAS_INCLUDE := /path/to/your/blas # BLAS_LIB := /path/to/your/blas # Homebrew puts openblas in a directory that is not on the standard search path # BLAS_INCLUDE := $(shell brew --prefix openblas)/include # BLAS_LIB := $(shell brew --prefix openblas)/lib # This is required only if you will compile the matlab interface. # MATLAB directory should contain the mex binary in /bin. MATLAB_DIR := /home/dsp #MATLAB_DIR := /home/dsp/bin # NOTE: this is required only if you will compile the python interface. # We need to be able to find Python.h and numpy/arrayobject.h. # PYTHON_INCLUDE := /usr/include/python2.7 \ # /usr/lib/python2.7/dist-packages/numpy/core/include # Anaconda Python distribution is quite popular. Include path: # Verify anaconda location, sometimes it's in root. ANACONDA_HOME := /home/dsp/anaconda2 PYTHON_INCLUDE := $(ANACONDA_HOME)/include \ $(ANACONDA_HOME)/include/python2.7 \ $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include # Uncomment to use Python 3 (default is Python 2) # PYTHON_LIBRARIES := boost_python3 python3.5m # PYTHON_INCLUDE := /usr/include/python3.5m \ # /usr/lib/python3.5/dist-packages/numpy/core/include # We need to be able to find libpythonX.X.so or .dylib. # PYTHON_LIB := /usr/lib PYTHON_LIB := $(ANACONDA_HOME)/lib # Homebrew installs numpy in a non standard path (keg only) # PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include # PYTHON_LIB += $(shell brew --prefix numpy)/lib # Uncomment to support layers written in Python (will link against Python libs) WITH_PYTHON_LAYER := 1 # Whatever else you find you need goes here. #INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial/ #LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include /usr/lib/x86_64-linux-gnu/hdf5/serial/include LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu/hdf5/serial # If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies # INCLUDE_DIRS += $(shell brew --prefix)/include # LIBRARY_DIRS += $(shell brew --prefix)/lib # NCCL acceleration switch (uncomment to build with NCCL) # https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0) # USE_NCCL := 1 # Uncomment to use `pkg-config` to specify OpenCV library paths. # (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.) # USE_PKG_CONFIG := 1 # N.B. both build and distribute dirs are cleared on `make clean` BUILD_DIR := build DISTRIBUTE_DIR := distribute # Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171 # DEBUG := 1 # The ID of the GPU that 'make runtest' will use to run unit tests. TEST_GPUID := 0 # enable pretty build (comment to see full commands) Q ?= @ LINKFLAGS := -Wl,-rpath,$(HOME)/anaconda2/lib
## Refer to http://caffe.berkeleyvision.org/installation.html # Contributions simplifying and improving our build system are welcome! # cuDNN acceleration switch (uncomment to build with cuDNN). USE_CUDNN := 1 # CPU-only switch (uncomment to build without GPU support). # CPU_ONLY := 1 # uncomment to disable IO dependencies and corresponding data layers USE_OPENCV := 0 # USE_LEVELDB := 0 # USE_LMDB := 0 # uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary) # You should not set this flag if you will be reading LMDBs with any # possibility of simultaneous read and write # ALLOW_LMDB_NOLOCK := 1 # Uncomment if you're using OpenCV 3 OPENCV_VERSION := 3 # To customize your choice of compiler, uncomment and set the following. # N.B. the default for Linux is g++ and the default for OSX is clang++ # CUSTOM_CXX := g++ # CUDA directory contains bin/ and lib/ directories that we need. CUDA_DIR := /usr/local/cuda # On Ubuntu 14.04, if cuda tools are installed via # "sudo apt-get install nvidia-cuda-toolkit" then use this instead: # CUDA_DIR := /usr # CUDA architecture setting: going with all of them. # For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility. # For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility. CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \ -gencode arch=compute_20,code=sm_21 \ -gencode arch=compute_30,code=sm_30 \ -gencode arch=compute_35,code=sm_35 \ -gencode arch=compute_50,code=sm_50 \ -gencode arch=compute_52,code=sm_52 \ -gencode arch=compute_60,code=sm_60 \ -gencode arch=compute_61,code=sm_61 \ -gencode arch=compute_61,code=compute_61 # BLAS choice: # atlas for ATLAS (default) # mkl for MKL # open for OpenBlas BLAS := atlas # Custom (MKL/ATLAS/OpenBLAS) include and lib directories. # Leave commented to accept the defaults for your choice of BLAS # (which should work)! # BLAS_INCLUDE := /path/to/your/blas # BLAS_LIB := /path/to/your/blas # Homebrew puts openblas in a directory that is not on the standard search path # BLAS_INCLUDE := $(shell brew --prefix openblas)/include # BLAS_LIB := $(shell brew --prefix openblas)/lib # This is required only if you will compile the matlab interface. # MATLAB directory should contain the mex binary in /bin. # MATLAB_DIR := /usr/local # MATLAB_DIR := /Applications/MATLAB_R2012b.app # NOTE: this is required only if you will compile the python interface. # We need to be able to find Python.h and numpy/arrayobject.h. # PYTHON_INCLUDE := /usr/include/python2.7 \ /usr/lib/python2.7/dist-packages/numpy/core/include # Anaconda Python distribution is quite popular. Include path: # Verify anaconda location, sometimes it's in root. ANACONDA_HOME := /home/dsp/anaconda2 PYTHON_INCLUDE := $(ANACONDA_HOME)/include \ $(ANACONDA_HOME)/include/python2.7 \ $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include # Uncomment to use Python 3 (default is Python 2) # PYTHON_LIBRARIES := boost_python3 python3.5m # PYTHON_INCLUDE := /usr/include/python3.5m \ # /usr/lib/python3.5/dist-packages/numpy/core/include # We need to be able to find libpythonX.X.so or .dylib. PYTHON_LIB := /usr/lib # PYTHON_LIB := $(ANACONDA_HOME)/lib # Homebrew installs numpy in a non standard path (keg only) # PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include # PYTHON_LIB += $(shell brew --prefix numpy)/lib # Uncomment to support layers written in Python (will link against Python libs) WITH_PYTHON_LAYER := 1 # Whatever else you find you need goes here. #INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial/ #LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include /usr/lib/x86_64-linux-gnu/hdf5/serial/include LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu/hdf5/serial # If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies # INCLUDE_DIRS += $(shell brew --prefix)/include # LIBRARY_DIRS += $(shell brew --prefix)/lib # NCCL acceleration switch (uncomment to build with NCCL) # https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0) # USE_NCCL := 1 # Uncomment to use `pkg-config` to specify OpenCV library paths. # (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.) # USE_PKG_CONFIG := 1 # N.B. both build and distribute dirs are cleared on `make clean` BUILD_DIR := build DISTRIBUTE_DIR := distribute # Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171 # DEBUG := 1 # The ID of the GPU that 'make runtest' will use to run unit tests. TEST_GPUID := 0 # enable pretty build (comment to see full commands) Q ?=
問題:
第一次編譯:出錯
sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler sudo apt-get install --no-install-recommends libboost-all-dev AR -o .build_release/lib/libcaffe.a LD -o .build_release/lib/libcaffe.so.1.0.0 /usr/bin/ld: 找不到 -lhdf5_hl /usr/bin/ld: 找不到 -lhdf5 /usr/bin/ld: 找不到 -lcudnn collect2: error: ld returned 1 exit status Makefile:572: recipe for target '.build_release/lib/libcaffe.so.1.0.0' failed make: *** [.build_release/lib/libcaffe.so.1.0.0] Error 1
- hdf5的問題,通過修改Makefile.config文件
在文件里面添加文本由於hdf5庫目錄更改,所以需要單獨添加: #INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial/ #LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include /usr/lib/x86_64-linux-gnu/hdf5/serial/include LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu/hdf5/serial
- 然后再次編譯有一個問題:
dsp@dsp:~/caffe$ make all -j16 LD -o .build_release/lib/libcaffe.so.1.0.0 /usr/bin/ld: 找不到 -lcudnn collect2: error: ld returned 1 exit status Makefile:572: recipe for target '.build_release/lib/libcaffe.so.1.0.0' failed make: *** [.build_release/lib/libcaffe.so.1.0.0] Error 1
-
i found that in the path "/usr/local/cuda/lib64/" don't have the file liblcudnn.so
該問題還在有待解決。
- 這個問題其實挺簡單的:后面自己想清楚了:就是cudnn的鏈接問題,重新拷貝cudnn文件;然后鏈接了一遍,后面就不報這個錯了
- 繼續編譯錯誤:
//home/dsp/anaconda2/lib/libpng16.so.16:對‘inflateValidate@ZLIB_1.2.9’未定義的引用/ /homecollect2: error: ld returned 1 exit status /dsp/anaconda2/lib/libpng16.so.16:對‘inflateValidate@ZLIB_1.2.9’�Makefile:625: recipe for target '.build_release/tools/upgrade_net_proto_text.bin' failed make: *** [.build_release/tools/upgrade_net_proto_text.bin] Error 1 �make: *** 正在等待未完成的任務.... �定義的引用 collect2: error: ld returned 1 exit status Makefile:625: recipe for target '.build_release/tools/upgrade_net_proto_binary.bin' failed make: *** [.build_release/tools/upgrade_net_proto_binary.bin] Error 1 //home/dsp/anaconda2/lib/libpng16.so.16:對‘inflateValidate@ZLIB_1.2.9’未定義的引用 collect2: error: ld returned 1 exit status Makefile:625: recipe for target '.build_release/tools/upgrade_solver_proto_text.bin' failed make: *** [.build_release/tools/upgrade_solver_proto_text.bin] Error 1 //home/dsp/anaconda2/lib/libpng16.so.16:對‘inflateValidate@ZLIB_1.2.9’未定義的引用 collect2: error: ld returned 1 exit status
- 然后我添加鏈接:sudo ln -s /home/username/anaconda2/lib/libpng16.so.16 libpng16.so.16 (方法不行)報另外的錯:
/usr/local/cuda-8.0/lib64/libpng16.so.16:對‘inflateValidate@ZLIB_1.2.9’未定義的引用 collect2: error: ld returned 1 exit status Makefile:625: recipe for target '.build_release/tools/upgrade_net_proto_binary.bin' failed make: *** [.build_release/tools/upgrade_net_proto_binary.bin] Error 1 make: *** 正在等待未完成的任務.... /usr/local/cuda-8.0/lib64/libpng16.so.16:對‘inflateValidate@ZLIB_1.2.9’未定��/usr�的引用 /localcollect2: error: ld returned 1 exit status /cuda-8.0/lib64/libpng16.so.16:對‘inflateValidate@ZLIB_1.2.9’未定義/的引用 collect2: error: ld returned 1 exit status usr/local/cudaMakefile:630: recipe for target '.build_release/examples/siamese/convert_mnist_siamese_data.bin' failed -make: *** [.build_release/examples/siamese/convert_mnist_siamese_data.bin] Error 1 8.0/lib64/libpng16.so.16:對‘inflateValidate@ZLIB_1.2.9’未定義的引用 collect2: error: ld returned 1 exit status
- 最后非常感謝:Caffe 編譯錯誤記錄:http://blog.csdn.net/ruotianxia/article/details/78437464
- 里面的幾個錯誤有代表性,按照下面的方法就沒有報這個錯了
在 Makefile.config 中,加入下一句
LINKFLAGS := -Wl,-rpath,$(HOME)/anaconda2/lib
- 然后執行:make all 報錯:
dsp@dsp:~/caffe$ make all -j16 make: Nothing to be done for 'all'
- 解決方法很簡單:
-
make: Nothing to be done for `all' 解決方法 1.這句提示是說明你已經編譯好了,而且沒有對代碼進行任何改動。 若想重新編譯,可以先刪除以前編譯產生的目標文件: make clean make
5. 黎明的曙光
- 按照如下編譯順序
make all -j16 make runtest -j16 make pycaffe -j16 make matcaffe -j16
- 其中make all 和make runtest時間比較長;make pycaffe 很順利
[----------] Global test environment tear-down [==========] 2123 tests from 281 test cases ran. (285688 ms total) [ PASSED ] 2123 tests. dsp@dsp:~/caffe$ make pycaffe -j16 touch python/caffe/proto/__init__.py CXX/LD -o python/caffe/_caffe.so python/caffe/_caffe.cpp PROTOC (python) src/caffe/proto/caffe.proto
- 實際使用pycaffe,出錯:
dsp@dsp:~/caffe$ python Python 2.7.14 |Anaconda, Inc.| (default, Oct 16 2017, 17:29:19) [GCC 7.2.0] on linux2 Type "help", "copyright", "credits" or "license" for more information. >>> import sys >>> caffe_root="/home/dsp/caffe/" >>> sys.path.insert(0,caffe_root+'python') >>> import caffe Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/dsp/caffe/python/caffe/__init__.py", line 1, in <module> from .pycaffe import Net, SGDSolver, NesterovSolver, AdaGradSolver, RMSPropSolver, AdaDeltaSolver, AdamSolver, NCCL, Timer File "/home/dsp/caffe/python/caffe/pycaffe.py", line 15, in <module> import caffe.io File "/home/dsp/caffe/python/caffe/io.py", line 8, in <module> from caffe.proto import caffe_pb2 File "/home/dsp/caffe/python/caffe/proto/caffe_pb2.py", line 6, in <module> from google.protobuf.internal import enum_type_wrapper ImportError: No module named google.protobuf.internal
- 通過conda下安裝protobuf即可
-
python caffe報錯:No module named google.protobuf.internal 我裝的是anaconda2, 解決方法是在其中安裝protobuf最新版本 conda install protobuf
6. MNIST數據集測試
配置caffe完成后,我們可以利用MNIST數據集對caffe進行測試,過程如下:
1.將終端定位到Caffe根目錄
cd ~/caffe
2.下載MNIST數據庫並解壓縮
./data/mnist/get_mnist.sh
3.將其轉換成Lmdb數據庫格式
./examples/mnist/create_mnist.sh
4.訓練網絡
./examples/mnist/train_lenet.sh
訓練的時候可以看到損失與精度數值,如下圖:

- make matcaffe 有gcc版本問題
dsp@dsp:~/caffe$ make matcaffe -j16 MEX matlab/+caffe/private/caffe_.cpp 使用 'g++' 編譯。 警告: 您使用的 gcc 版本為 '5.4.0'。不支持該版本的 gcc。MEX 當前支持的版本為 '4.9.x'。有關當前支持的編譯器列表,請參閱: http://www.mathworks.com/support/compilers/current_release。 MEX 已成功完成。
-
解決辦法是: 在Makefile里面,大約第410行那一句話 CXXFLAGS += -MMD -MP 下面添加CXXFLAGS += -std=c++11, 最后是這樣 CXXFLAGS += -MMD -MP CXXFLAGS += -std=c++11 然后在caffe根目錄下make clean,make all
- 執行 make mattest的時候,報錯:
....... b/+caffe/private/caffe_.mexa64' 需要的符號 '_ZNSt7__cxx1112basic_stringIcSt11char_traitsIcESaIcEED1Ev' 缺少 '/usr/lib/x86_64-linux-gnu/libboost_python-py27.so.1.58.0->/home/dsp/caffe/matlab/+caffe/private/caffe_.mexa64' 需要的符號 '_ZNSt7__cxx1112basic_stringIwSt11char_traitsIwESaIwEE12_M_constructEmw' 缺少 '/usr/lib/x86_64-linux-gnu/libboost_python-py27.so.1.58.0->/home/dsp/caffe/matlab/+caffe/private/caffe_.mexa64' 需要的符號 '_ZNSt7__cxx1112basic_stringIwSt11char_traitsIwESaIwEE9_M_createERmm'。 出錯 caffe.set_mode_cpu (line 5) caffe_('set_mode_cpu'); 出錯 caffe.run_tests (line 6) caffe.set_mode_cpu();
- 參考:Caffe中使用MATLAB接口
- 最后設置調用caffe/python的路徑,可以在任意路徑終端下導入caffe
- 經過差不多兩天的時間,安裝了很多東西,情形慶幸沒有重裝系統,具體的內容如下:
cuda: /usr/local/ opencv_3.1: /usr/local/ anaconda2,caffe: /home/dsp/ python系統默認:2.7 anaconda:2.7 ;虛擬環境下tensorflow_py3.5 matlab2017a: /home/dsp/bin/matlab caffe: /home/dsp/caffe 使用方法: ------ matlab2017a: 終端輸入: matlab即可,界面有問題,待解決 ------ 默認終端python: dsp@dsp:~$ python Python 2.7.14 |Anaconda, Inc.| (default, Oct 16 2017, 17:29:19) [GCC 7.2.0] on linux2 ------ 終端輸入:spyder python為:anaconda自帶的python2.7 ------ tensorflow1.4 + python3.5使用: dsp@dsp:~$ source activate tensorflow_py3.5 (tensorflow_py3.5) dsp@dsp:~$ spyder 注: 1. 需要不同的python環境,需要自己創建虛擬環境 2. 安裝依賴項時注意,安裝的位置 3. 也可以通過:(tensorflow_py3.5) dsp@dsp:~$ anaconda-navigator 來安裝和啟動spyder ------ pycharm 使用: 1. 解壓安裝包可直接使用 2. 運行:(tensorflow_py3.5) dsp@dsp:~$ sh ./pycharm/bin/pycharm.sh ;只要路徑對即可 3. 設置解釋器為:python2.7 或者tensorflow_py3.5 ------ caffe 使用: 1. 使用anaconda自帶的python2.7即可 2. 添加caffe的路徑,再使用 3. 本機可以在任意路徑終端下:輸入:python; 然后:import caffe
Reference:
安裝ubuntu16.04+cuda8.0+caffe+python+matlab+opencv3.0
http://blog.csdn.net/shiorioxy/article/details/52652831
http://blog.csdn.net/u012841667/article/details/53572431(makefile.config各代碼配置說明)

