MATLAB機器學習沒看到啥教程,只有一系列函數,只好記錄下:
- 有監督學習
- 無監督學習
- 集成學習
1.有監督學習:
| 類名 |
方法名 |
函數名 |
說明 |
| 線性回歸 |
多元線性回歸 |
fitlm |
具有多個預測變量的線性回歸 |
| 逐步回歸 |
stepwise |
交互式逐步回歸 |
|
| 多目標的多元線性回歸 |
mvregress |
使用多變量輸出的線性回歸 |
|
| 有正則化的多元線性回歸 |
lasso |
使用彈性網正則化的多元線性回歸 |
|
| ridge |
Ridge回歸 |
||
| 非線性回歸 |
fitnlm |
擬合非線性回歸模型 |
|
| 廣義線性模型 |
正態分布擬合 |
fitglm |
'Distribution' 設置為 'normal' |
| 二項分布擬合 |
fitglm |
'Distribution' 設置為 'binomial' |
|
| 泊松分布擬合 |
fitglm |
'Distribution' 設置為 'poisson' |
|
| gamma分布擬合 |
fitglm |
'Distribution' 設置為 'gamma' |
|
| 反高斯分布擬合 |
fitglm |
'Distribution' 設置為 'inverse gaussian' |
|
| 進行變量選擇的逐步回歸 |
stepwiseglm |
交互式逐步回歸 |
|
| 帶有正則化的廣義線性回歸 |
lassoglm |
使用彈性網正則化的廣義線性回歸 |
|
| 回歸分類 決策樹 (CART) |
分類樹 |
fitctree |
訓練分類二叉決策樹 |
| 回歸樹 |
fitrtree |
訓練回歸二叉決策樹 |
|
| 支持 向量機 |
二分類支持向量機 |
fitcsvm |
訓練二分類支持向量機分類 |
| 多分類支持向量機 |
fitcecoc |
適用SVM或其他分類器的多類模型 |
|
| 判別分析 |
fitcdiscr |
擬合判別分析分類器 |
|
| 朴素貝葉斯分類器 |
fitcnb |
訓練朴素貝葉斯分類 |
|
| 最近鄰 |
k-近鄰 |
fitcknn |
擬合k-近鄰分類器 |
| 類名 |
方法名 |
函數名 |
說明 |
| 分層聚類 |
通過聚類樹進行聚類 |
cluster |
返回聚類后各樣本類別 |
| 通過數據進行聚類 |
clusterdata |
返回聚類后各樣本類別 |
|
| 分成聚類樹 |
linkage |
訓練分層聚類樹 |
|
| 通過距離聚類 |
K-means聚類 |
kmeans |
|
| K-medoids聚類 |
kmedoids |
|
|
| 最近鄰 |
全局最近鄰搜索 |
ExhaustiveSearcher |
准備全局最近鄰居搜索 |
| KD樹搜索 |
KDTreeSearcher |
生成KD樹 |
|
| createns |
使用KD樹搜索 |
||
| KNN搜索 |
knnsearch |
使用Kd-tree或全局k-最近鄰搜索 |
|
| 范圍搜索 |
rangesearch |
使用全局與Kd-tree查找指定范圍的近鄰 |
|
| 高斯混合模型 |
高斯混合模型 |
fitgmdist |
擬合高斯混合模型 |
| 基於高斯混合模型的聚類 |
cluster |
生成基於高斯混合模型的聚類 |
|
| 隱馬爾可夫模型 |
估計隱馬爾可夫模型 |
hmmtrain |
通過觀測估計隱馬爾科夫模型參數 |
| hmmestimate |
通過狀態和觀測估計參數 |
||
| 生成觀測序列 |
hmmgenerate |
生成隱馬爾可夫模型狀態和觀測 |
|
| 最可能狀態路徑 |
hmmviterbi |
計算最可能的狀態路徑 |
|
| 后驗狀態概率 |
hmmdecode |
計算隱馬爾可夫模型后驗狀態概率 |
| 類名 |
方法名 |
函數名 |
說明 |
| Boosting |
二分類:AdaBoostM1 |
fitensemble |
'Method' 配置為 'AdaBoostM1' |
| 二分類:LogitBoost |
fitensemble |
'Method' 配置為 ' LogitBoost' |
|
| 二分類:GentleBoost |
fitensemble |
'Method' 配置為 ' GentleBoost' |
|
| 二分類:RobustBoost |
fitensemble |
'Method' 配置為 ' RobustBoost' |
|
| 多分類: AdaBoostM2 |
fitensemble |
'Method' 配置為 ' AdaBoostM2' |
|
| 多分類: LPBoosts |
fitensemble |
'Method' 配置為 ' LPBoosts' |
|
| 多分類:TotalBoost |
fitensemble |
'Method' 配置為 ' TotalBoost' |
|
| 多分類:RUSBoost |
fitensemble |
'Method' 配置為 ' RUSBoost' |
|
| 回歸:LSBoost |
fitensemble |
'Method' 配置為 'LPBoost' |
|
| 提升二分類為多分類模型 |
fitcecoc |
基於二分類模型訓練多分類模型 |
|
| Bagging(多分類或回歸) |
fitensemble |
'Method' 配置為 'Bag' |
|
| 隨機子空間(多分類或回歸) |
fitensemble |
'Method' 配置為 'Subspace' |
|
