Tensorflow學習教程------模型參數和網絡結構保存且載入,輸入一張手寫數字圖片判斷是幾


首先是模型參數和網絡結構的保存

 

#coding:utf-8
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

mnist = input_data.read_data_sets('MNIST_data',one_hot=True)
#每個批次的大小
batch_size = 100
n_batch = mnist.train._num_examples // batch_size
#定義兩個placeholder
x = tf.placeholder(tf.float32, [None,784],name='x-input' )  #模型輸入的地方加名字
y = tf.placeholder(tf.float32,[None,10])
keep_prob  = tf.placeholder(tf.float32,name='keepProb')

def weight_variable(shape):
    initial = tf.truncated_normal(shape,stddev=0.1) #生成一個截斷的正態分布
    return tf.Variable(initial)
def bias_variable(shape):
    initial = tf.constant(0.1,shape = shape)
    return tf.Variable(initial)
#卷基層
def conv2d(x,W):
    return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')
#池化層
def max_pool_2x2(x):
    return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')

 
#改變x的格式轉為4D的向量[batch,in_height,in_width,in_channels]
x_image = tf.reshape(x, [-1,28,28,1])
 
#初始化第一個卷基層的權值和偏置
W_conv1 = weight_variable([5,5,1,32]) #5*5的采樣窗口 32個卷積核從一個平面抽取特征 32個卷積核是自定義的
b_conv1 = bias_variable([32])  #每個卷積核一個偏置值
 
#把x_image和權值向量進行卷積,再加上偏置值,然后應用於relu激活函數
h_conv1 = tf.nn.relu(conv2d(x_image,W_conv1)+b_conv1)
h_pool1 = max_pool_2x2(h_conv1) #進行max-pooling
 
#初始化第二個卷基層的權值和偏置
W_conv2 = weight_variable([5,5,32,64]) # 5*5的采樣窗口 64個卷積核從32個平面抽取特征  由於前一層操作得到了32個特征圖
b_conv2 = bias_variable([64]) #每一個卷積核一個偏置值
 
#把h_pool1和權值向量進行卷積 再加上偏置值 然后應用於relu激活函數
h_conv2 = tf.nn.relu(conv2d(h_pool1,W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2) #進行max-pooling
 
#28x28的圖片第一次卷積后還是28x28 第一次池化后變為14x14
#第二次卷積后 變為14x14 第二次池化后變為7x7
#通過上面操作后得到64張7x7的平面
 
#初始化第一個全連接層的權值
W_fc1 = weight_variable([7*7*64,1024])#上一層有7*7*64個神經元,全連接層有1024個神經元
b_fc1 = bias_variable([1024]) #1024個節點
 
#把第二個池化層的輸出扁平化為一維
h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64])
#求第一個全連接層的輸出
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1)+b_fc1)
 
#keep_prob用來表示神經元的輸出概率

h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob)
 
#初始化第二個全連接層
W_fc2 = weight_variable([1024,10])
b_fc2 = bias_variable([10])
 
#計算輸出
prediction = tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2)+b_fc2, name='output')   #模型輸出的地方加名字
 
#交叉熵代價函數
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction))
 
#使用AdamOptimizer進行優化
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
#結果存放在一個布爾列表中
correct_prediction = tf.equal(tf.argmax(prediction,1),tf.argmax(y,1)) #argmax返回一維張量中最大的值所在的位置
#求准確率
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
 
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    for epoch in range(10):
        for batch in range(n_batch):
            batch_xs,batch_ys = mnist.train.next_batch(batch_size)
            sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys,keep_prob:0.7})
        acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels,keep_prob:1.0})
        print ("Iter "+ str(epoch) + ", Testing Accuracy= " + str(acc))
    #保存模型參數與網絡結構
    output_graph_def = tf.graph_util.convert_variables_to_constants(sess,sess.graph_def,output_node_names=['output'])
    #保存模型到目錄下的model文件夾中
    with tf.gfile.FastGFile('/home/bayes/mymodel.pb',mode='wb') as f:
        f.write(output_graph_def.SerializeToString())

  

結果

Iter 0, Testing Accuracy= 0.8616
Iter 1, Testing Accuracy= 0.9663
Iter 2, Testing Accuracy= 0.9776
Iter 3, Testing Accuracy= 0.9815
Iter 4, Testing Accuracy= 0.985
Iter 5, Testing Accuracy= 0.9863
Iter 6, Testing Accuracy= 0.9871
Iter 7, Testing Accuracy= 0.9895
Iter 8, Testing Accuracy= 0.9878
Iter 9, Testing Accuracy= 0.9894
Converted 8 variables to const ops.

載入模型參數與網絡結構,並且預測圖片

#coding:utf-8
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
from PIL import Image,ImageFilter
mnist = input_data.read_data_sets('MNIST_data',one_hot=True)
#定義一個placeholder
y = tf.placeholder(tf.float32,[None,10])

def imageprepare(argv): # 該函數讀一張圖片,處理后返回一個數組,進到網絡中預測
    im = Image.open(argv).convert('L')
    width = float(im.size[0])
    height = float(im.size[1])
    newImage = Image.new('L', (28, 28), (255))  # creates white canvas of 28x28 pixels

    if width > height:  # check which dimension is bigger
        # Width is bigger. Width becomes 20 pixels.
        nheight = int(round((20.0 / width * height), 0))  # resize height according to ratio width
        if nheight == 0:  # rare case but minimum is 1 pixel
            nheight = 1
            # resize and sharpen
        img = im.resize((20, nheight), Image.ANTIALIAS).filter(ImageFilter.SHARPEN)
        wtop = int(round(((28 - nheight) / 2), 0))  # caculate horizontal pozition
        newImage.paste(img, (4, wtop))  # paste resized image on white canvas
    else:
        # Height is bigger. Heigth becomes 20 pixels.
        nwidth = int(round((20.0 / height * width), 0))  # resize width according to ratio height
        if (nwidth == 0):  # rare case but minimum is 1 pixel
            nwidth = 1
            # resize and sharpen
        img = im.resize((nwidth, 20), Image.ANTIALIAS).filter(ImageFilter.SHARPEN)
        wleft = int(round(((28 - nwidth) / 2), 0))  # caculate vertical pozition
        newImage.paste(img, (wleft, 4))  # paste resized image on white canvas

    # newImage.save("sample.png")

    tv = list(newImage.getdata())  # get pixel values

    # normalize pixels to 0 and 1. 0 is pure white, 1 is pure black.
    tva = [(255 - x) * 1.0 / 255.0 for x in tv]
    return tva
#載入模型
with tf.gfile.FastGFile('/home/bayes/mymodel.pb','rb' ) as f:
    graph_def = tf.GraphDef()
    graph_def.ParseFromString(f.read())
    tf.import_graph_def(graph_def,name='')
  
with tf.Session() as sess:
    output = sess.graph.get_tensor_by_name('output:0')
      #結果存放在一個布爾列表中
    correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(output,1)) #argmax返回一維張量中最大的值所在的位置
      #求准確率
    accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))  
    #訓練的時候加了dropout,載入模型進行預測或者計算准確率的時候一定記得也加入dropout
    print (sess.run(accuracy,feed_dict={'x-input:0':mnist.test.images, y:mnist.test.labels,'keepProb:0':1.0})) 
    array = imageprepare('/home/bayes/logs/3.jpg') 
    prediction = tf.argmax(output,1)
    finalClass = sess.run(prediction,feed_dict={'x-input:0':[array],'keepProb:0':1.0})
    print('The digits in this image is:%d' % finalClass)

手寫數字圖片3 

結果

I tensorflow/core/common_runtime/gpu/gpu_device.cc:906] DMA: 0 
I tensorflow/core/common_runtime/gpu/gpu_device.cc:916] 0:   Y 
I tensorflow/core/common_runtime/gpu/gpu_device.cc:975] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GTX 1080 Ti, pci bus id: 0000:03:00.0)
0.9894
The digits in this image is:3

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM