程序員必知的8大排序(一)-------直接插入排序,希爾排序(java實現)
程序員必知的8大排序(二)-------簡單選擇排序,堆排序(java實現)
程序員必知的8大排序(三)-------冒泡排序,快速排序(java實現)
程序員必知的8大排序(四)-------歸並排序,基數排序(java實現)
程序員必知的8大排序(五)-------總結
3.簡單選擇排序
(1)基本思想:在要排序的一組數中,選出最小的一個數與第一個位置的數交換;
然后在剩下的數當中再找最小的與第二個位置的數交換,如此循環到倒數第二個數和最后一個數比較為止。
(3)實例:
(3)用java實現
public class Sort { public static void main(String[] args) { // int[] arr={3,1,4,2}; selectSort(); // for(int i = 0; i<arr.length; i++){ // System.out.println(arr[i]); // } } public static void selectSort(){ int a[]={1,54,6,3,78,34,12,45}; int position=0; for(int i=0;i<a.length;i++){ int j=i+1; position=i; int temp=a[i]; for(;j<a.length;j++){ if(a[j]<temp){ temp=a[j]; position=j; } } a[position]=a[i]; a[i]=temp; } for(int i=0;i<a.length;i++) System.out.println(a[i]); } }
4,堆排序
(1)基本思想:堆排序是一種樹形選擇排序,是對直接選擇排序的有效改進。
堆的定義如下:具有n個元素的序列(h1,h2,...,hn),當且僅當滿足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1)(i=1,2,...,n/2)時稱之為堆。在這里只討論滿足前者條件的堆。由堆的定義可以看出,堆頂元素(即第一個元素)必為最大項(大頂堆)。完全二叉樹可以很直觀地表示堆的結構。堆頂為根,其它為左子樹、右子樹。初始時把要排序的數的序列看作是一棵順序存儲的二叉樹,調整它們的存儲序,使之成為一個堆,這時堆的根節點的數最大。然后將根節點與堆的最后一個節點交換。然后對前面(n-1)個數重新調整使之成為堆。依此類推,直到只有兩個節點的堆,並對它們作交換,最后得到有n個節點的有序序列。從算法描述來看,堆排序需要兩個過程,一是建立堆,二是堆頂與堆的最后一個元素交換位置。所以堆排序有兩個函數組成。一是建堆的滲透函數,二是反復調用滲透函數實現排序的函數。
(2)實例:
初始序列:46,79,56,38,40,84
建堆:
交換,從堆中踢出最大數
剩余結點再建堆,再交換踢出最大數
依次類推:最后堆中剩余的最后兩個結點交換,踢出一個,排序完成。
(3)用java實現
import java.util.Arrays; public class Sort { public static void main(String[] args) { int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51}; heapSort(a); } public static void heapSort(int[] a){ System.out.println("開始排序"); int arrayLength=a.length; //循環建堆 for(int i=0;i<arrayLength-1;i++){ //建堆 buildMaxHeap(a,arrayLength-1-i); //交換堆頂和最后一個元素 swap(a,0,arrayLength-1-i); System.out.println(Arrays.toString(a)); } } private static void swap(int[] data, int i, int j) { // TODO Auto-generated method stub int tmp=data[i]; data[i]=data[j]; data[j]=tmp; } //對data數組從0到lastIndex建大頂堆 private static void buildMaxHeap(int[] data, int lastIndex) { // TODO Auto-generated method stub //從lastIndex處節點(最后一個節點)的父節點開始 for(int i=(lastIndex-1)/2;i>=0;i--){ //k保存正在判斷的節點 int k=i; //如果當前k節點的子節點存在 while(k*2+1<=lastIndex){ //k節點的左子節點的索引 int biggerIndex=2*k+1; //如果biggerIndex小於lastIndex,即biggerIndex+1代表的k節點的右子節點存在 if(biggerIndex<lastIndex){ //若果右子節點的值較大 if(data[biggerIndex]<data[biggerIndex+1]){ //biggerIndex總是記錄較大子節點的索引 biggerIndex++; } } //如果k節點的值小於其較大的子節點的值 if(data[k]<data[biggerIndex]){ //交換他們 swap(data,k,biggerIndex); //將biggerIndex賦予k,開始while循環的下一次循環,重新保證k節點的值大於其左右子節點的值 k=biggerIndex; }else{ break; } } } } }