Mysql加鎖過程詳解(2)-關於mysql 幻讀理解出現了幻讀,那么不是說mysql的重復讀解決了幻讀的么?
那么,InnoDB指出的可以避免幻讀是怎么回事呢?
http://dev.mysql.com/doc/refman/5.0/en/innodb-record-level-locks.html
By default, InnoDB operates in REPEATABLE READ transaction isolation level and with the innodb_locks_unsafe_for_binlog system variable disabled. In this case, InnoDB uses next-key locks for searches and index scans, which prevents phantom rows (see Section 13.6.8.5, “Avoiding the Phantom Problem Using Next-Key Locking”).
准備的理解是,當隔離級別是可重復讀,且禁用innodb_locks_unsafe_for_binlog的情況下,在搜索和掃描index的時候使用的next-key locks可以避免幻讀。
關鍵點在於,是InnoDB默認對一個普通的查詢也會加next-key locks,還是說需要應用自己來加鎖呢?如果單看這一句,可能會以為InnoDB對普通的查詢也加了鎖,如果是,那和序列化(SERIALIZABLE)的區別又在哪里呢?
MySQL manual里還有一段:
13.2.8.5. Avoiding the Phantom Problem Using Next-Key Locking (http://dev.mysql.com/doc/refman/5.0/en/innodb-next-key-locking.html)
To prevent phantoms,
InnoDBuses an algorithm called next-key locking that combines index-row locking with gap locking.You can use next-key locking to implement a uniqueness check in your application: If you read your data in share mode and do not see a duplicate for a row you are going to insert, then you can safely insert your row and know that the next-key lock set on the successor of your row during the read prevents anyone meanwhile inserting a duplicate for your row. Thus, the next-key locking enables you to “lock” the nonexistence of something in your table.
我的理解是說,InnoDB提供了next-key locks,但需要應用程序自己去加鎖。manual里提供一個例子:
SELECT * FROM child WHERE id > 100 FOR UPDATE;
這樣,InnoDB會給id大於100的行(假如child表里有一行id為102),以及100-102,102+的gap都加上鎖。
可以使用show innodb status來查看是否給表加上了鎖。
下面看列子
例子1
| a |
b |
| SET SESSION TRANSACTION ISOLATION LEVEL REPEATABLE READ; |
|
| SET AUTOCOMMIT=0; |
|
|
|
|
| BEGIN |
BEGIN |
| SELECT * FROM test WHERE a='1' FOR UPDATE; |
|
|
|
SELECT * FROM test |
|
|
|
|
|
INSERT test VALUES(1,1); |
|
|
鎖住了 |
| INSERT test VALUES(1,1); |
|
| 成功 |
|
| COMMIT |
|
|
|
|
|
|
COMMIT |
|
|
避免幻讀可以select鎖住,再insert |
例子2
| a |
b |
| SET SESSION TRANSACTION ISOLATION LEVEL REPEATABLE READ; |
|
| SET AUTOCOMMIT=0; |
|
|
|
|
| BEGIN |
BEGIN |
| SELECT * FROM test WHERE a='1' FOR UPDATE; |
|
|
|
SELECT * FROM test |
|
|
|
|
|
INSERT test VALUES(2,2); |
|
|
連2也被鎖住了? |
| INSERT test VALUES(1,1); |
|
| 成功 |
|
| COMMIT |
|
|
|
這次提交成功 |
|
|
COMMIT |
| 其他嘗試,這種情況無論插入2還是5都被鎖住等等 |
|
例子3
| a |
b |
| SET SESSION TRANSACTION ISOLATION LEVEL REPEATABLE READ; |
|
| SET AUTOCOMMIT=0; |
|
|
|
|
| BEGIN |
BEGIN |
| SELECT * FROM test |
SELECT * FROM test |
|
|
| SELECT * FROM test WHERE a='1' FOR UPDATE; |
|
| |
SELECT * FROM test |
|
|
|
|
|
INSERT test VALUES(2,2); |
|
|
|
| COMMIT |
COMMIT |
| 成功 |
|
| COMMIT |
|
|
|
COMMIT |
|
|
|
例子 4
| a |
b |
| SET SESSION TRANSACTION ISOLATION LEVEL REPEATABLE READ; |
|
| SET AUTOCOMMIT=0; |
|
|
|
|
| BEGIN |
BEGIN |
| SELECT * FROM test |
SELECT * FROM test |
|
|
| SELECT * FROM test WHERE a='2' FOR UPDATE; |
|
|
|
|
|
SELECT * FROM test |
|
|
|
|
|
INSERT test VALUES(2,2); |
|
|
|
|
|
INSERT test VALUES(5,5); |
|
|
|
| COMMIT |
COMMIT |
例子 5
| a |
b |
| SET SESSION TRANSACTION ISOLATION LEVEL REPEATABLE READ; |
|
| SET AUTOCOMMIT=0; |
|
| BEGIN |
BEGIN |
| SELECT * FROM test |
SELECT * FROM test |
|
|
| SELECT * FROM test WHERE a='1' FOR UPDATE; |
|
|
|
INSERT test VALUES(5,5); |
|
|
插入5成功了 |
|
|
UPDATE test SET b=33 WHERE a='3' |
|
|
|
|
|
INSERT test VALUES(2,2); |
|
|
2也可以 |
|
|
UPDATE test SET b=11 WHERE a='1' |
|
|
1鎖住了 |
| COMMIT |
|
|
|
|
|
|
COMMIT |
| SELECT * FROM test |
SELECT * FROM test |
|
|
以上例子說明,forupdate時候,id為主鍵,RR策略時候,鎖住了的條件符合的行,但是如果條件找不到任何列,鎖住的是整個表,(主鍵,唯一索引,非唯一索引,(insert,update對於gab鎖不通),參考第一章,第七章,第九章)
------------------------------------------------------------------
再來看大神的解釋 :鏈接: http://blog.bitfly.cn/post/mysql-innodb-phantom-read/
再看一個實驗,要注意,表t_bitfly里的id為主鍵字段。實驗三:
t Session A Session B
|
| START TRANSACTION; START TRANSACTION;
|
| SELECT * FROM t_bitfly
| WHERE id<=1
| FOR UPDATE;
| +------+-------+
| | id | value |
| +------+-------+
| | 1 | a |
| +------+-------+
| INSERT INTO t_bitfly
| VALUES (2, 'b');
| Query OK, 1 row affected
|
| SELECT * FROM t_bitfly;
| +------+-------+
| | id | value |
| +------+-------+
| | 1 | a |
| +------+-------+
| INSERT INTO t_bitfly
| VALUES (0, '0');
| (waiting for lock ...
| then timeout)
| ERROR 1205 (HY000):
| Lock wait timeout exceeded;
| try restarting transaction
|
| SELECT * FROM t_bitfly;
| +------+-------+
| | id | value |
| +------+-------+
| | 1 | a |
| +------+-------+
| COMMIT;
|
| SELECT * FROM t_bitfly;
| +------+-------+
| | id | value |
| +------+-------+
| | 1 | a |
| +------+-------+
v
可以看到,用id<=1加的鎖,只鎖住了id<=1的范圍,可以成功添加id為2的記錄,添加id為0的記錄時就會等待鎖的釋放。
MySQL manual里對可重復讀里的鎖的詳細解釋:
http://dev.mysql.com/doc/refman/5.0/en/set-transaction.html#isolevel_repeatable-read
For locking reads (
SELECTwithFOR UPDATEorLOCK IN SHARE MODE),UPDATE, andDELETEstatements, locking depends on whether the statement uses a unique index with a unique search condition, or a range-type search condition. For a unique index with a unique search condition,InnoDBlocks only the index record found, not the gap before it. For other search conditions,InnoDBlocks the index range scanned, using gap locks or next-key (gap plus index-record) locks to block insertions by other sessions into the gaps covered by the range.
------
一致性讀和提交讀,先看實驗,實驗四:
t Session A Session B
|
| START TRANSACTION; START TRANSACTION;
|
| SELECT * FROM t_bitfly;
| +----+-------+
| | id | value |
| +----+-------+
| | 1 | a |
| +----+-------+
| INSERT INTO t_bitfly
| VALUES (2, 'b');
| COMMIT;
|
| SELECT * FROM t_bitfly;
| +----+-------+
| | id | value |
| +----+-------+
| | 1 | a |
| +----+-------+
|
| SELECT * FROM t_bitfly LOCK IN SHARE MODE;
| +----+-------+
| | id | value |
| +----+-------+
| | 1 | a |
| | 2 | b |
| +----+-------+
|
| SELECT * FROM t_bitfly FOR UPDATE;
| +----+-------+
| | id | value |
| +----+-------+
| | 1 | a |
| | 2 | b |
| +----+-------+
|
| SELECT * FROM t_bitfly;
| +----+-------+
| | id | value |
| +----+-------+
| | 1 | a |
| +----+-------+
v
如果使用普通的讀,會得到一致性的結果,如果使用了加鎖的讀,就會讀到“最新的”“提交”讀的結果。
本身,可重復讀和提交讀是矛盾的。在同一個事務里,如果保證了可重復讀,就會看不到其他事務的提交,違背了提交讀;如果保證了提交讀,就會導致前后兩次讀到的結果不一致,違背了可重復讀。
可以這么講,InnoDB提供了這樣的機制,在默認的可重復讀的隔離級別里,可以使用加鎖讀去查詢最新的數據。
http://dev.mysql.com/doc/refman/5.0/en/innodb-consistent-read.html
If you want to see the “freshest” state of the database, you should use either the READ COMMITTED isolation level or a locking read:
SELECT * FROM t_bitfly LOCK IN SHARE MODE;
結論:MySQL InnoDB的可重復讀並不保證避免幻讀,需要應用使用加鎖讀來保證。而這個加鎖度使用到的機制就是next-key locks。
結論:mysql 的重復讀解決了幻讀的現象,但是需要 加上








