tf.train.shuffle_batch函數解析
覺得有用的話,歡迎一起討論相互學習~
tf.train.shuffle_batch
-
(tensor_list, batch_size, capacity, min_after_dequeue, num_threads=1, seed=None, enqueue_many=False, shapes=None, name=None)
-
Creates batches by randomly shuffling tensors. 通過隨機打亂張量的順序創建批次.
簡單來說就是讀取一個文件並且加載一個張量中的batch_size行
This function adds the following to the current Graph
:
這個函數將以下內容加入到現有的圖中.
-
A shuffling queue into which tensors from
tensor_list
are enqueued.
一個由傳入張量組成的隨機亂序隊列 -
A
dequeue_many
operation to create batches from the queue.
從張量隊列中取出張量的出隊操作 -
A
QueueRunner
toQUEUE_RUNNER
collection, to enqueue the tensors
fromtensor_list
.
一個隊列運行器管理出隊操作.
Ifenqueue_many
isFalse
,tensor_list
is assumed to represent a single example. An input tensor with shape[x, y, z]
will be output as a tensor with shape[batch_size, x, y, z]
. -
If
enqueue_many
isTrue
,tensor_list
is assumed to represent a batch of examples, where the first dimension is indexed by example, and all members oftensor_list
should have the same size in the first dimension. If an input tensor has shape[*, x, y, z]
, the output will have shape[batch_size, x, y, z]
.
enqueue_many主要是設置tensor中的數據是否能重復,如果想要實現同一個樣本多次出現可以將其設置為:"True",如果只想要其出現一次,也就是保持數據的唯一性,這時候我們將其設置為默認值:"False"
-
The
capacity
argument controls the how long the prefetching is allowed to grow the queues. capacity控制了預抓取操作對於增加隊列長度操作的長度. -
For example:
# Creates batches of 32 images and 32 labels.
image_batch, label_batch = tf.train.shuffle_batch( [single_image, single_label], batch_size=32, num_threads=4,capacity=50000,min_after_dequeue=10000)
這段代碼寫的是從[single_image, single_label]利用4個線程讀取32個數據作為一個batch
Args:
tensor_list
: The list of tensors to enqueue.
入隊的張量列表batch_size
: The new batch size pulled from the queue.
表示進行一次批處理的tensors數量.capacity
: An integer. The maximum number of elements in the queue.
容量:一個整數,隊列中的最大的元素數.
這個參數一定要比min_after_dequeue參數的值大,並且決定了我們可以進行預處理操作元素的最大值.
推薦其值為:
min_after_dequeue
: Minimum number elements in the queue after a
dequeue(出列), used to ensure a level of mixing of elements.- 當一次出列操作完成后,隊列中元素的最小數量,往往用於定義元素的混合級別.
- 定義了隨機取樣的緩沖區大小,此參數越大表示更大級別的混合但是會導致啟動更加緩慢,並且會占用更多的內存
num_threads
: The number of threads enqueuingtensor_list
.- 設置num_threads的值大於1,使用多個線程在tensor_list中讀取文件,這樣保證了同一時刻只在一個文件中進行讀取操作(但是讀取速度依然優於單線程),而不是之前的同時讀取多個文件,這種方案的優點是:
- 避免了兩個不同的線程從同一文件中讀取用一個樣本
- 避免了過多的磁盤操作
seed
: Seed for the random shuffling within the queue.
打亂tensor隊列的隨機數種子enqueue_many
: Whether each tensor intensor_list
is a single example.
定義tensor_list中的tensor是否冗余.shapes
: (Optional) The shapes for each example. Defaults to the
inferred shapes fortensor_list
.
用於改變讀取tensor的形狀,默認情況下和直接讀取的tensor的形狀一致.name
: (Optional) A name for the operations.
Returns:
- A list of tensors with the same number and types as
tensor_list
.
默認返回一個和讀取tensor_list數據和類型一個tensor列表.