Akka(19): Stream:組合數據流,組合共用-Graph modular composition


   akka-stream的Graph是一種運算方案,它可能代表某種簡單的線性數據流圖如:Source/Flow/Sink,也可能是由更基礎的流圖組合而成相對復雜點的某種復合流圖,而這個復合流圖本身又可以被當作組件來組合更大的Graph。因為Graph只是對數據流運算的描述,所以它是可以被重復利用的。所以我們應該盡量地按照業務流程需要來設計構建Graph。在更高的功能層面上實現Graph的模塊化(modular)。按上回討論,Graph又可以被描述成一種黑盒子,它的入口和出口就是Shape,而內部的作用即處理步驟Stage則是用GraphStage來形容的。下面是akka-stream預設的一些基礎數據流圖:

compose_shapes.png

上面Source,Sink,Flow代表具備線性步驟linear-stage的流圖,屬於最基礎的組件,可以用來構建數據處理鏈條。而Fan-In合並型,Fan-Out擴散型則具備多個輸入或輸出端口,可以用來構建更復雜的數據流圖。我們可以用以上這些基礎Graph來構建更復雜的復合流圖,而這些復合流圖又可以被重復利用去構建更復雜的復合流圖。下面就是一些常見的復合流圖:

compose_composites.png

注意上面的Composite Flow(from Sink and Source)可以用Flow.fromSinkAndSource函數構建:

def fromSinkAndSource[I, O](sink: Graph[SinkShape[I], _], source: Graph[SourceShape[O], _]): Flow[I, O, NotUsed] = fromSinkAndSourceMat(sink, source)(Keep.none)

這個Flow從流向來說先Sink再Source是反的,形成的Flow上下游間無法協調,即Source端終結信號無法到達Sink端,因為這兩端是相互獨立的。我們必須用CoupledTermination對象中的fromSinkAndSource函數構建的Flow來解決這個問題:

/** * Allows coupling termination (cancellation, completion, erroring) of Sinks and Sources while creating a Flow them them. * Similar to `Flow.fromSinkAndSource` however that API does not connect the completion signals of the wrapped stages. */
object CoupledTerminationFlow { @deprecated("Use `Flow.fromSinkAndSourceCoupledMat(..., ...)(Keep.both)` instead", "2.5.2") def fromSinkAndSource[I, O, M1, M2](in: Sink[I, M1], out: Source[O, M2]): Flow[I, O, (M1, M2)] = Flow.fromSinkAndSourceCoupledMat(in, out)(Keep.both)  

從上面圖列里的Composite BidiFlow可以看出:一個復合Graph的內部可以是很復雜的,但從外面看到的只是簡單的幾個輸入輸出端口。不過Graph內部構件之間的端口必須按照功能邏輯進行正確的連接,剩下的就變成直接向外公開的界面端口了。這種機制支持了層級式的模塊化組合方式,如下面的圖示:

compose_nested_flow.png

最后變成:

compose_nested_flow_opaque.png

在DSL里我們可以用name("???")來分割模塊:

val nestedFlow =
  Flow[Int].filter(_ != 0) // an atomic processing stage
    .map(_ - 2) // another atomic processing stage
    .named("nestedFlow") // wraps up the Flow, and gives it a name

val nestedSink =
  nestedFlow.to(Sink.fold(0)(_ + _)) // wire an atomic sink to the nestedFlow
    .named("nestedSink") // wrap it up

// Create a RunnableGraph
val runnableGraph = nestedSource.to(nestedSink)

在下面這個示范里我們自定義一個某種功能的流圖模塊:它有2個輸入和3個輸出。然后我們再使用這個自定義流圖模塊組建一個完整的閉合流圖:

import akka.actor._
import akka.stream._
import akka.stream.scaladsl._

import scala.collection.immutable

object GraphModules {
  def someProcess[I, O]: I => O = i => i.asInstanceOf[O]

  case class TwoThreeShape[I, I2, O, O2, O3](
                                              in1: Inlet[I],
                                              in2: Inlet[I2],
                                              out1: Outlet[O],
                                              out2: Outlet[O2],
                                              out3: Outlet[O3]) extends Shape {

    override def inlets: immutable.Seq[Inlet[_]] = in1 :: in2 :: Nil

    override def outlets: immutable.Seq[Outlet[_]] = out1 :: out2 :: out3 :: Nil

    override def deepCopy(): Shape = TwoThreeShape(
      in1.carbonCopy(),
      in2.carbonCopy(),
      out1.carbonCopy(),
      out2.carbonCopy(),
      out3.carbonCopy()
    )
  }
//a functional module with 2 input 3 output
  def TwoThreeGraph[I, I2, O, O2, O3] = GraphDSL.create() { implicit builder =>
    val balancer = builder.add(Balance[I](2))
    val flow = builder.add(Flow[I2].map(someProcess[I2, O2]))

    TwoThreeShape(balancer.in, flow.in, balancer.out(0), balancer.out(1), flow.out)
  }

  val closedGraph = GraphDSL.create() {implicit builder =>
    import GraphDSL.Implicits._
    val inp1 = builder.add(Source(List(1,2,3))).out
    val inp2 = builder.add(Source(List(10,20,30))).out
    val merge = builder.add(Merge[Int](2))
    val mod23 = builder.add(TwoThreeGraph[Int,Int,Int,Int,Int])

     inp1 ~> mod23.in1
     inp2 ~> mod23.in2
     mod23.out1 ~> merge.in(0)
     mod23.out2 ~> merge.in(1)
     mod23.out3 ~> Sink.foreach(println)
     merge ~> Sink.foreach(println)
     ClosedShape

  }
}

object TailorGraph extends App {
  import GraphModules._

  implicit val sys = ActorSystem("streamSys")
  implicit val ec = sys.dispatcher
  implicit val mat = ActorMaterializer()

  RunnableGraph.fromGraph(closedGraph).run()

  scala.io.StdIn.readLine()
  sys.terminate()


}

這個自定義的TwoThreeGraph是一個復合的流圖模塊,是可以重復使用的。注意這個~>符合的使用:akka-stream只提供了對預設定Shape作為連接對象的支持如:

      def ~>[Out](junction: UniformFanInShape[T, Out])(implicit b: Builder[_]): PortOps[Out] = {...} def ~>[Out](junction: UniformFanOutShape[T, Out])(implicit b: Builder[_]): PortOps[Out] = {...} def ~>[Out](flow: FlowShape[T, Out])(implicit b: Builder[_]): PortOps[Out] = {...} def ~>(to: Graph[SinkShape[T], _])(implicit b: Builder[_]): Unit = b.addEdge(importAndGetPort(b), b.add(to).in) def ~>(to: SinkShape[T])(implicit b: Builder[_]): Unit = b.addEdge(importAndGetPort(b), to.in) ...

所以對於我們自定義的TwoThreeShape就只能使用直接的端口連接了:

   def ~>[U >: T](to: Inlet[U])(implicit b: Builder[_]): Unit = b.addEdge(importAndGetPort(b), to)

以上的過程顯示:通過akka的GraphDSL,對復合型Graph的構建可以實現形象化,大部分工作都在如何對組件之間的端口進行連接。我們再來看個較復雜復合流圖的構建過程,下面是這個流圖的圖示:

compose_graph.png

可以說這是一個相對復雜的數據處理方案,里面甚至包括了數據流回路(feedback)。無法想象如果用純函數數據流如scalaz-stream應該怎樣去實現這么復雜的流程,也可能根本是沒有解決方案的。但用akka GraphDSL可以很形象的組合這個數據流圖;

 import GraphDSL.Implicits._ RunnableGraph.fromGraph(GraphDSL.create() { implicit builder => val A: Outlet[Int] = builder.add(Source.single(0)).out val B: UniformFanOutShape[Int, Int] = builder.add(Broadcast[Int](2)) val C: UniformFanInShape[Int, Int] = builder.add(Merge[Int](2)) val D: FlowShape[Int, Int] = builder.add(Flow[Int].map(_ + 1)) val E: UniformFanOutShape[Int, Int] = builder.add(Balance[Int](2)) val F: UniformFanInShape[Int, Int] = builder.add(Merge[Int](2)) val G: Inlet[Any] = builder.add(Sink.foreach(println)).in C <~ F A ~>  B  ~>  C     ~> F B ~>  D  ~>  E  ~> F E ~> G ClosedShape })

另一個端口連接方式的版本如下:

RunnableGraph.fromGraph(GraphDSL.create() { implicit builder => val B = builder.add(Broadcast[Int](2)) val C = builder.add(Merge[Int](2)) val E = builder.add(Balance[Int](2)) val F = builder.add(Merge[Int](2)) Source.single(0) ~> B.in; B.out(0) ~> C.in(1); C.out ~> F.in(0) C.in(0) <~ F.out B.out(1).map(_ + 1) ~> E.in; E.out(0) ~> F.in(1) E.out(1) ~> Sink.foreach(println) ClosedShape })

如果把上面這個復雜的Graph切分成模塊的話,其中一部分是這樣的:

compose_graph_partial.png

這個開放數據流復合圖可以用GraphDSL這樣構建:
val partial = GraphDSL.create() { implicit builder => val B = builder.add(Broadcast[Int](2)) val C = builder.add(Merge[Int](2)) val E = builder.add(Balance[Int](2)) val F = builder.add(Merge[Int](2)) C <~ F B ~>                            C  ~> F B ~>  Flow[Int].map(_ + 1)  ~>  E  ~> F FlowShape(B.in, E.out(1)) }.named("partial")
模塊化的完整Graph圖示如下:
compose_graph_flow.png
這部分可以用下面的代碼來實現:
// Convert the partial graph of FlowShape to a Flow to get // access to the fluid DSL (for example to be able to call .filter())
val flow = Flow.fromGraph(partial) // Simple way to create a graph backed Source
val source = Source.fromGraph( GraphDSL.create() { implicit builder => val merge = builder.add(Merge[Int](2)) Source.single(0)      ~> merge Source(List(2, 3, 4)) ~> merge // Exposing exactly one output port
  SourceShape(merge.out) }) // Building a Sink with a nested Flow, using the fluid DSL
val sink = { val nestedFlow = Flow[Int].map(_ * 2).drop(10).named("nestedFlow") nestedFlow.to(Sink.head) } // Putting all together
val closed = source.via(flow.filter(_ > 1)).to(sink)
和scalaz-stream不同的還有akka-stream的運算是在actor上進行的,除了大家都能對數據流元素進行處理之外,akka-stream還可以通過actor的內部狀態來維護和返回運算結果。這個運算結果在復合流圖中傳播的過程是可控的,如下圖示:
compose_mat.png

返回運算結果是通過viaMat, toMat來實現的。簡寫的via,to默認選擇流圖左邊運算產生的結果。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM