2017-08-12
Logistic 回歸,作為分類器:
分別用了梯度上升,牛頓法來最優化損失函數:
1 # -*- coding: utf-8 -*-
2
3 '''
4 function: 實現Logistic回歸,擬合直線,對數據進行分類; 5 利用梯度上升,隨機梯度上升,改進的隨機梯度上升,牛頓法分別對損失函數優化; 6 這里沒有給出最后測試分類的函數; 7 date: 2017.8.12 8 '''
9
10 from numpy import *
11
12 #從文件加載處理數據
13 def loadDataSet(): 14 dataMat = [] 15 labelMat = [] 16 fr = open('testSet.txt') 17 for line in fr.readlines(): 18 lineArr = line.strip().split() 19 dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])]) 20 labelMat.append(int(lineArr[2])) 21 return dataMat, labelMat 22
23 #sigmoid function X: w1*x1+w2*x2+...+wn*xn
24 def sigmoid(x): 25 return 1 / (1 + exp(-x)) 26
27 #梯度上升求函數的最大值時取得的權重
28 def gradAscent(dataMatIn, classLabels): 29 dataMatrix = mat(dataMatIn) 30 labelMat = mat(classLabels).transpose() #將m維行向量轉制為m維列向量
31 m,n = shape(dataMatrix) 32 alpha = 0.001 #設置梯度上升的步長
33 maxCycles = 500 #最大迭代次數
34 weights = ones((n,1)) #weights就是theta,n維列向量,二維數組
35 for i in range(maxCycles): 36 h = sigmoid(dataMatrix*weights) #計算所有數據的分類概率,h是m維向量,這里實際上進行了300次乘法運算
37 error = labelMat - h #計算(y-h(x)):誤差
38 weights = weights + alpha * dataMatrix.transpose()*error #對所有weights同時更新
39 print('shape of weights', shape(weights)) 40 return weights 41
42 #隨機上升上升
43 def stocGradAscent0(dataMatrix, classLabels): 44 m,n = shape(dataMatrix) 45 alpha = 0.01
46 weights = ones(n, float) #n 維行向量
47 for i in range(m): 48 h = sigmoid(sum(dataMatrix[i] * weights)) 49 error = classLabels[i] - h 50 weights = weights + alpha * error * dataMatrix[int(i)] 51 return weights 52
53 #改進的隨機上升上升
54 def stocGradAscent1(dataMatrix, classLabels, numIter = 550): 55 m,n = shape(dataMatrix) 56 weights = ones(n) 57 dataIndex = [] 58 for j in range(numIter): 59 for k in range(m): 60 dataIndex.append(k) 61 for i in range(m): 62 alpha = 4 / (i + j + 1.0) + 0.01 #aloha隨着迭代次數增多不斷減小但是不為0,為了解決局部波動
63 randIndex = int(random.uniform(0, len(dataIndex))) #隨機選取一個數據進行更新參數
64 h = sigmoid(dataMatrix[randIndex] * weights) 65 error = classLabels[randIndex] - h 66 weights = weights + alpha * error * dataMatrix[randIndex] 67 del(dataIndex[randIndex]) #這里會不會對本來的dataMatrix有影響,不會,因為沒有操作矩陣
68 return weights 69
70 '''
71 functuion: 牛頓法更新theta,計算海森矩陣 72 note: 這里一定要對 XT*X 結果求逆,不然分類效果無法直視 73 '''
74 def computeHessianMatrix(dataMatrix): 75 hessianMatrix = mat(dataMatrix).transpose().dot(mat(dataMatrix)) 76 return hessianMatrix.I #矩陣求逆
77
78 '''
79 function: 牛頓法更新theta 80 '''
81 def newtonMethod(dataMat, labelMat, numIter = 10): 82 m,n = shape(dataMat) 83 dataMatrix = mat(dataMat) 84 labelMat = mat(labelMat).transpose() 85 weights = ones((n,1)) #參數向量
86 hessianMatrix = computeHessianMatrix(dataMatrix) 87 print('shape of hessian', shape(hessianMatrix)) 88 for k in range(numIter): 89 h = sigmoid(dataMatrix * weights) 90 error = (labelMat - h) 91 weights = weights - (dataMatrix*hessianMatrix).transpose() * error 92 return weights 93
94 #畫出決策邊界
95 def plotBestFit(weights): 96 import matplotlib.pyplot as plt 97 dataMat, labelMat = loadDataSet() #或取數據和標簽
98 dataArr = array(dataMat) #將二維列表轉換為數組
99 n = shape(dataArr)[0] #行數,代表數據的個數
100
101 xcord1 = []; ycord1 = [] 102 xcord2 = []; ycord2 = [] 103 for i in range(n): 104 if int(labelMat[i]) == 1: 105 xcord1.append(dataArr[i,1]); ycord1.append(dataArr[i,2]) 106 else: 107 xcord2.append(dataArr[i,1]); ycord2.append(dataArr[i,2]) 108
109 fig = plt.figure() 110 ax = fig.add_subplot(111) 111 ax.scatter(xcord1, ycord1, s = 30, c = 'red', marker = 's') 112 ax.scatter(xcord2, ycord2, s = 30, c = 'green') 113 x = arange(-3.0, 3.0, 0.1) 114 print(len(x)) 115 print(len(weights)) 116 print(shape(weights)) 117 y = (-weights[0] - weights[1]*x) / weights[2] #把x2堪稱y,x0=1,所以就是x1,x2之間的函數
118 print(len(y)) 119 ax.plot(x,y) 120 plt.xlabel('X1'); plt.ylabel('X2') 121 plt.show() #顯示圖像
122
123 '''
124 function: 對測試數據進行測試 125 input: testDate 是一個向量,或者多個向量 126 '''
127 def logisticTest(weights, testData): 128 m,n = shape(testData) 129 typeLabel = [] 130 for i in range(m): 131 result = sigmoid(sum(testData[i] * weights)) #得到一個冊數數據的概率
132 if result > 0.5: 133 typeLabel.append(1) 134 else: 135 typeLabel.append(0) 136 return typeLabel 137
138 '''
139 function: 計算分類的正確率 140 input: calssLables 是測試數據的類別向量 141 '''
142 def getCorrectRate(classLabels, testLabel): 143 correctRate = 0.0
144 numOfRight = 0 145 for i in range(len(testLabel)): 146 if classLabels[i] == testLabel[i]: 147 numOfRight += 1
148 correctRate = numOfRight / float(len(testLabel)) 149 return correctRate 150
151 #測試算法
152 dataMat, labelMat = loadDataSet() 153 print('shape of datamet, ', shape(dataMat)) 154 weights1 = gradAscent(dataMat, labelMat) 155 weights2 = stocGradAscent0(array(dataMat), labelMat) 156 weights3 = stocGradAscent1(dataMat, labelMat) 157
158 weights4 = newtonMethod(dataMat, labelMat, 2000) #牛頓法
159
160
161 #測試正確率
162 typeLabel = logisticTest(weights4, [[1,1,0],[1,1,1]]) 163 print(typeLabel) 164 correctRate = getCorrectRate([1,0],typeLabel) 165 print('正確率: ' ,str(correctRate)) 166
167 #畫圖
168 #plotBestFit(array(weights1)) #這里因為普通梯度上升返回的是一個矩陣,所以要轉換為向量
169 #plotBestFit(weights2)
170 #plotBestFit(weights3)
171 plotBestFit(array(weights4))
# -*- coding: utf-8 -*-
'''function: 實現Logistic回歸,擬合直線,對數據進行分類;利用梯度上升,隨機梯度上升,改進的隨機梯度上升,牛頓法分別對損失函數優化;這里沒有給出最后測試分類的函數;date: 2017.8.12'''
from numpy import *
#從文件加載處理數據def loadDataSet():dataMat = []labelMat = []fr = open('testSet.txt')for line in fr.readlines():lineArr = line.strip().split()dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])labelMat.append(int(lineArr[2]))return dataMat, labelMat
#sigmoid function X: w1*x1+w2*x2+...+wn*xndef sigmoid(x):return 1 / (1 + exp(-x))
#梯度上升求函數的最大值時取得的權重def gradAscent(dataMatIn, classLabels):dataMatrix = mat(dataMatIn)labelMat = mat(classLabels).transpose() #將m維行向量轉制為m維列向量m,n = shape(dataMatrix)alpha = 0.001 #設置梯度上升的步長maxCycles = 500 #最大迭代次數 weights = ones((n,1)) #weights就是theta,n維列向量,二維數組for i in range(maxCycles):h = sigmoid(dataMatrix*weights) #計算所有數據的分類概率,h是m維向量,這里實際上進行了300次乘法運算error = labelMat - h #計算(y-h(x)):誤差weights = weights + alpha * dataMatrix.transpose()*error #對所有weights同時更新print('shape of weights', shape(weights))return weights
#隨機上升上升def stocGradAscent0(dataMatrix, classLabels):m,n = shape(dataMatrix)alpha = 0.01weights = ones(n, float) #n 維行向量for i in range(m):h = sigmoid(sum(dataMatrix[i] * weights))error = classLabels[i] - hweights = weights + alpha * error * dataMatrix[int(i)]return weights
#改進的隨機上升上升def stocGradAscent1(dataMatrix, classLabels, numIter = 550):m,n = shape(dataMatrix)weights = ones(n)dataIndex = []for j in range(numIter):for k in range(m):dataIndex.append(k)for i in range(m):alpha = 4 / (i + j + 1.0) + 0.01 #aloha隨着迭代次數增多不斷減小但是不為0,為了解決局部波動randIndex = int(random.uniform(0, len(dataIndex))) #隨機選取一個數據進行更新參數h = sigmoid(dataMatrix[randIndex] * weights)error = classLabels[randIndex] - hweights = weights + alpha * error * dataMatrix[randIndex]del(dataIndex[randIndex]) #這里會不會對本來的dataMatrix有影響,不會,因為沒有操作矩陣return weights
'''functuion: 牛頓法更新theta,計算海森矩陣note: 這里一定要對 XT*X 結果求逆,不然分類效果無法直視'''def computeHessianMatrix(dataMatrix):hessianMatrix = mat(dataMatrix).transpose().dot(mat(dataMatrix))return hessianMatrix.I #矩陣求逆
'''function: 牛頓法更新theta'''def newtonMethod(dataMat, labelMat, numIter = 10):m,n = shape(dataMat)dataMatrix = mat(dataMat)labelMat = mat(labelMat).transpose()weights = ones((n,1)) #參數向量hessianMatrix = computeHessianMatrix(dataMatrix)print('shape of hessian', shape(hessianMatrix))for k in range(numIter):h = sigmoid(dataMatrix * weights)error = (labelMat - h)weights = weights - (dataMatrix*hessianMatrix).transpose() * error return weights
#畫出決策邊界def plotBestFit(weights):import matplotlib.pyplot as pltdataMat, labelMat = loadDataSet() #或取數據和標簽dataArr = array(dataMat) #將二維列表轉換為數組n = shape(dataArr)[0] #行數,代表數據的個數
xcord1 = []; ycord1 = []xcord2 = []; ycord2 = []for i in range(n):if int(labelMat[i]) == 1:xcord1.append(dataArr[i,1]); ycord1.append(dataArr[i,2])else:xcord2.append(dataArr[i,1]); ycord2.append(dataArr[i,2])
fig = plt.figure()ax = fig.add_subplot(111)ax.scatter(xcord1, ycord1, s = 30, c = 'red', marker = 's')ax.scatter(xcord2, ycord2, s = 30, c = 'green')x = arange(-3.0, 3.0, 0.1)print(len(x))print(len(weights))print(shape(weights))y = (-weights[0] - weights[1]*x) / weights[2] #把x2堪稱y,x0=1,所以就是x1,x2之間的函數print(len(y))ax.plot(x,y) plt.xlabel('X1'); plt.ylabel('X2')plt.show() #顯示圖像
'''function: 對測試數據進行測試input: testDate 是一個向量,或者多個向量'''def logisticTest(weights, testData):m,n = shape(testData)typeLabel = []for i in range(m): result = sigmoid(sum(testData[i] * weights)) #得到一個冊數數據的概率if result > 0.5:typeLabel.append(1)else:typeLabel.append(0)return typeLabel
'''function: 計算分類的正確率input: calssLables 是測試數據的類別向量'''def getCorrectRate(classLabels, testLabel):correctRate = 0.0numOfRight = 0for i in range(len(testLabel)):if classLabels[i] == testLabel[i]:numOfRight += 1correctRate = numOfRight / float(len(testLabel))return correctRate
#測試算法dataMat, labelMat = loadDataSet()print('shape of datamet, ', shape(dataMat))weights1 = gradAscent(dataMat, labelMat)weights2 = stocGradAscent0(array(dataMat), labelMat)weights3 = stocGradAscent1(dataMat, labelMat)
weights4 = newtonMethod(dataMat, labelMat, 2000) #牛頓法
#測試正確率typeLabel = logisticTest(weights4, [[1,1,0],[1,1,1]])print(typeLabel)correctRate = getCorrectRate([1,0],typeLabel)print('正確率: ' ,str(correctRate))
#畫圖#plotBestFit(array(weights1)) #這里因為普通梯度上升返回的是一個矩陣,所以要轉換為向量#plotBestFit(weights2)#plotBestFit(weights3)plotBestFit(array(weights4))