原理
Camshift算法是Continuously Adaptive Mean Shift algorithm的簡稱。
它是一個基於MeanSift的改進算法。它首次由Gary R.Bradski等人提出和應用在人臉的跟蹤上,並取得了不錯的效果。因為它是利用顏色的概率信息進行的跟蹤。使得它的執行效率比較高。 Camshift算法的過程由以下步驟組成:
(1)確定初始目標及其區域;
(2)計算出目標的色度(Hue)分量的直方圖;
(3)利用直方圖計算輸入圖像的反向投影圖(后面做進一步的解釋);
(4)利用MeanShift算法在反向投影圖中迭代收索,直到其收斂或達到最大迭代次數。並保存零次矩。
(5)從第(4)步中獲得收索窗體的中心位置和計算出新的窗體大小。以此為參數,進入到下一幀的目標跟蹤。(即跳轉到第(2)步);
代碼
#include "stdafx.h"
#include "opencv2/video/tracking.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <iostream>
#include <ctype.h>
using namespace cv;
using namespace std;
Mat image;
bool backprojMode = false;
bool selectObject = false;
int trackObject = 0;
bool showHist = true;
Point origin;
Rect selection(0,0,50,50);
static void onMouse( int event, int x, int y, int, void* )
{
switch( event )
{
case CV_EVENT_LBUTTONDOWN:
origin = Point(x,y);
selection = Rect(x,y,0,0);
selectObject = true;
break;
case CV_EVENT_LBUTTONUP:
selectObject = false;
if( selection.width > 0 && selection.height > 0 )
trackObject = -1;
break;
}
if( selectObject )
{
selection.x = MIN(x, origin.x);
selection.y = MIN(y, origin.y);
selection.width = std::abs(x - origin.x);
selection.height = std::abs(y - origin.y);
}
}
int main( int argc, const char** argv )
{
cv::VideoCapture capture(0);
capture.set( CV_CAP_PROP_FRAME_WIDTH,640);
capture.set( CV_CAP_PROP_FRAME_HEIGHT,480 );
if(!capture.isOpened())
return -1;
double rate = capture.get(CV_CAP_PROP_FPS); //獲取幀率
int delay = 1000 / rate; //計算幀間延遲;
Mat frame,image,hsv,mask,hue;
namedWindow("test",CV_WINDOW_AUTOSIZE);
setMouseCallback("test",onMouse,0);
while (1)
{
capture>>frame;
if(trackObject == -1){ //設置完檢測的對象后開始跟蹤
frame.copyTo(image);
cv::cvtColor(image,hsv,CV_RGB2HSV);
cv::inRange(hsv,Scalar(0,130,50),Scalar(180,256,256),mask); //去掉低飽和度的點
vector<cv::Mat> v;
cv::split(hsv,v); //hsv的三個通道分開
hue = v[1];
cv::Mat ROI = hue(selection); //選擇感興趣的區域
cv::Mat maskROI = mask(selection);
cv::MatND hist;
int histsize[1];
histsize[0]= 16;
float hranges[2];
hranges[0] = 0;
hranges[1] = 180;
const float *ranges[1];
ranges[0] = hranges;
cv::calcHist(&ROI,1,0,maskROI,hist,1,histsize,ranges);//感興趣區域的直方圖。從參數太多
cv::normalize(hist,hist,0,180,CV_MINMAX); //對直方圖進行歸一化處理;
cv::Mat backpro;
cv::calcBackProject(&hue,1,0,hist,backpro,ranges); //對h通道的進行反投影放入backpro中
backpro &= mask;
cv::RotatedRect trackBox = cv::CamShift(backpro,selection,
TermCriteria(CV_TERMCRIT_EPS | CV_TERMCRIT_ITER,10,1));//使用均值秒一算法找出RECT;
cv::ellipse(frame,trackBox,cv::Scalar(0,0,255),2,CV_AA);
}
cv::imshow("test",frame);
if(waitKey(30) >= 0)
break;
}
capture.release();
return 0;
}
效果
用攝像頭獲取視頻

直接讀取視頻
總結:
效果不是太好。可能是沒有預處理或者參數設置的不好。
剛開始學習的人。期待大嬸知道!
