一、訓練函數
1、traingd
Name:Gradient descent backpropagation (梯度下降反向傳播算法 )
Description:triangd is a network training function that updates weight and bias values according to gradient descent.
2、traingda
Name:Gradient descent with adaptive learning rate backpropagation(自適應學習率的t梯度下降反向傳播算法)
Description:triangd is a network training function that updates weight and bias values according to gradient descent with adaptive learning rate. it will return a trained net (net) and the trianing record (tr).
3、traingdx (newelm函數默認的訓練函數)
name:Gradient descent with momentum and adaptive learning rate backpropagation(帶動量的梯度下降的自適應學習率的反向傳播算法)
Description:triangdx is a network training function that updates weight and bias values according to gradient descent momentum and an adaptive learning rate.it will return a trained net (net) and the trianing record (tr).
4、trainlm
Name:Levenberg-Marquardt backpropagation (L-M反向傳播算法)
Description:triangd is a network training function that updates weight and bias values according toLevenberg-Marquardt optimization. it will return a trained net (net) and the trianing record (tr).
注:更多的訓練算法請用matlab的help命令查看。
二、學習函數
1、learngd
Name:Gradient descent weight and bias learning function (梯度下降的權值和閾值學習函數)
Description:learngd is the gradient descent weight and bias learning function, it will return the weight change dW and a new learning state.
2、learngdm
Name:Gradient descent with momentum weight and bias learning function (帶動量的梯度下降的權值和閾值學習函數)
Description:learngd is the gradient descent with momentum weight and bias learning function, it will return the weight change dW and a new learning state.
注:更多的學習函數用matlab的help命令查看。
三、訓練函數與學習函數的區別
學習函數的輸出是權值和閾值的增量,訓練函數的輸出是訓練好的網絡和訓練記錄,在訓練過程中訓練函數不斷調用學習函數修正權值和閾值,通過檢測設定的訓練步數或性能函數計算出的誤差小於設定誤差,來結束訓練。
或者這么說:訓練函數是全局調整權值和閾值,考慮的是整體誤差的最小。學習函數是局部調整權值和閾值,考慮的是單個神經元誤差的最小[1]。
參考鏈接:【1】 https://zhidao.baidu.com/question/1883990061249711708.html?fr=iks&word=matlab%D6%D0traingdx%BA%CDlearngdm%B5%C4%C7%F8%B1%F0&ie=gbk