ETL學習整理 PostgreSQL


 

ETL分別是Extract”、“ Transform” 、Load”三個單詞的首字母縮寫也就是“抽取”、“轉換”、“裝載”,但我們日常往往簡稱其為數據抽取。

ETL是BI/DW(商務智能/數據倉庫)的核心和靈魂,按照統一的規則集成並提高數據的價值,是負責完成數據從數據源向目標數據倉庫轉化的過程,是實施數據倉庫的重要步驟。

ETL包含了三方面:

抽取”:將數據從各種原始的業務系統中讀取出來,這是所有工作的前提。

轉換”:按照預先設計好的規則將抽取得數據進行轉換,使本來異構的數據格式能統一起來。

裝載”:將轉換完的數據按計划增量或全部導入到數據倉庫中。

 

ETL是將業務系統的數據經過抽取、清洗轉換之后加載到數據倉庫的過程,目的是將企業中的分散、零亂、標准不統一的數據整合到一起,為企業的決策提供分析依據。 ETL是BI項目重要的一個環節。 通常情況下,在BI項目中ETL會花掉整個項目至少1/3的時間,ETL設計的好壞直接關接到BI項目的成敗。       

  ETL的設計分三部分:數據抽取、數據的清洗轉換、數據的加載。在設計ETL的時候我們也是從這三部分出發。數據的抽取是從各個不同的數據源抽取到ODS(Operational Data Store,操作型數據存儲)中——這個過程也可以做一些數據的清洗和轉換),在抽取的過程中需要挑選不同的抽取方法,盡可能的提高ETL的運行效率。ETL三個部分中,花費時間最長的是“T”(Transform,清洗、轉換)的部分,一般情況下這部分工作量是整個ETL的2/3。數據的加載一般在數據清洗完了之后直接寫入DW(Data Warehousing,數據倉庫)中去。

  ETL的實現有多種方法,常用的有三種。一種是借助ETL工具(如Oracle的OWB、SQL Server 2000的DTS、SQL Server2005的SSIS服務、Informatic等)實現,一種是SQL方式實現,另外一種是ETL工具和SQL相結合。前兩種方法各有各的優缺點,借助工具可以快速的建立起ETL工程,屏蔽了復雜的編碼任務,提高了速度,降低了難度,但是缺少靈活性。SQL的方法優點是靈活,提高ETL運行效率,但是編碼復雜,對技術要求比較高。第三種是綜合了前面二種的優點,會極大地提高ETL的開發速度和效率。

  一、 數據的抽取(Extract)

  這一部分需要在調研階段做大量的工作,首先要搞清楚數據是從幾個業務系統中來,各個業務系統的數據庫服務器運行什么DBMS,是否存在手工數據,手工數據量有多大,是否存在非結構化的數據等等,當收集完這些信息之后才可以進行數據抽取的設計。

  1、對於與存放DW的數據庫系統相同的數據源處理方法

  這一類數據源在設計上比較容易。一般情況下,DBMS(SQLServer、Oracle)都會提供數據庫鏈接功能,在DW數據庫服務器和原業務系統之間建立直接的鏈接關系就可以寫Select 語句直接訪問。

  2、對於與DW數據庫系統不同的數據源的處理方法

  對於這一類數據源,一般情況下也可以通過ODBC的方式建立數據庫鏈接——如SQL Server和Oracle之間。如果不能建立數據庫鏈接,可以有兩種方式完成,一種是通過工具將源數據導出成.txt或者是.xls文件,然后再將這些源系統文件導入到ODS中。另外一種方法是通過程序接口來完成。

  3、對於文件類型數據源(.txt,.xls),可以培訓業務人員利用數據庫工具將這些數據導入到指定的數據庫,然后從指定的數據庫中抽取。或者還可以借助工具實現。

  4、增量更新的問題

  對於數據量大的系統,必須考慮增量抽取。一般情況下,業務系統會記錄業務發生的時間,我們可以用來做增量的標志,每次抽取之前首先判斷ODS中記錄最大的時間,然后根據這個時間去業務系統取大於這個時間所有的記錄。利用業務系統的時間戳,一般情況下,業務系統沒有或者部分有時間戳。

二、數據的清洗轉換(Cleaning、Transform)

  一般情況下,數據倉庫分為ODS、DW兩部分。通常的做法是從業務系統到ODS做清洗,將臟數據和不完整數據過濾掉,在從ODS到DW的過程中轉換,進行一些業務規則的計算和聚合。

  1、 數據清洗

  數據清洗的任務是過濾那些不符合要求的數據,將過濾的結果交給業務主管部門,確認是否過濾掉還是由業務單位修正之后再進行抽取。

不符合要求的數據主要是有不完整的數據、錯誤的數據、重復的數據三大類。

  (1)不完整的數據:這一類數據主要是一些應該有的信息缺失,如供應商的名稱、分公司的名稱、客戶的區域信息缺失、業務系統中主表與明細表不能匹配等。對於這一類數據過濾出來,按缺失的內容分別寫入不同Excel文件向客戶提交,要求在規定的時間內補全。補全后才寫入數據倉庫。

  (2)錯誤的數據:這一類錯誤產生的原因是業務系統不夠健全,在接收輸入后沒有進行判斷直接寫入后台數據庫造成的,比如數值數據輸成全角數字字符、字符串數據后面有一個回車操作、日期格式不正確、日期越界等。這一類數據也要分類,對於類似於全角字符、數據前后有不可見字符的問題,只能通過寫SQL語句的方式找出來,然后要求客戶在業務系統修正之后抽取。日期格式不正確的或者是日期越界的這一類錯誤會導致ETL運行失敗,這一類錯誤需要去業務系統數據庫用SQL的方式挑出來,交給業務主管部門要求限期修正,修正之后再抽取。

  (3)重復的數據:對於這一類數據——特別是維表中會出現這種情況——將重復數據記錄的所有字段導出來,讓客戶確認並整理。

  數據清洗是一個反復的過程,不可能在幾天內完成,只有不斷的發現問題,解決問題。對於是否過濾,是否修正一般要求客戶確認,對於過濾掉的數據,寫入Excel文件或者將過濾數據寫入數據表,在ETL開發的初期可以每天向業務單位發送過濾數據的郵件,促使他們盡快地修正錯誤,同時也可以做為將來驗證數據的依據。數據清洗需要注意的是不要將有用的數據過濾掉,對於每個過濾規則認真進行驗證,並要用戶確認。

  2、 數據轉換

  數據轉換的任務主要進行不一致的數據轉換、數據粒度的轉換,以及一些商務規則的計算。

  (1)不一致數據轉換:這個過程是一個整合的過程,將不同業務系統的相同類型的數據統一,比如同一個供應商在結算系統的編碼是XX0001,而在CRM中編碼是YY0001,這樣在抽取過來之后統一轉換成一個編碼。

  (2)數據粒度的轉換:業務系統一般存儲非常明細的數據,而數據倉庫中數據是用來分析的,不需要非常明細的數據。一般情況下,會將業務系統數據按照數據倉庫粒度進行聚合。

  (3)商務規則的計算:不同的企業有不同的業務規則、不同的數據指標,這些指標有的時候不是簡單的加加減減就能完成,這個時候需要在ETL中將這些數據指標計算好了之后存儲在數據倉庫中,以供分析使用。

三、ETL日志、警告發送

  1、 ETL日志

  ETL日志分為三類。

一類是執行過程日志,這一部分日志是在ETL執行過程中每執行一步的記錄,記錄每次運行每一步驟的起始時間,影響了多少行數據,流水賬形式。

一類是錯誤日志,當某個模塊出錯的時候寫錯誤日志,記錄每次出錯的時間、出錯的模塊以及出錯的信息等。

第三類日志是總體日志,只記錄ETL開始時間、結束時間是否成功信息。如果使用ETL工具,ETL工具會自動產生一些日志,這一類日志也可以作為ETL日志的一部分。

記錄日志的目的是隨時可以知道ETL運行情況,如果出錯了,可以知道哪里出錯。

  2、 警告發送

  如果ETL出錯了,不僅要形成ETL出錯日志,而且要向系統管理員發送警告。發送警告的方式多種,一般常用的就是給系統管理員發送郵件,並附上出錯的信息,方便管理員排查錯誤。

  ETL是BI項目的關鍵部分,也是一個長期的過程,只有不斷的發現問題並解決問題,才能使ETL運行效率更高,為BI項目后期開發提供准確與高效的數據。

后記

     做數據倉庫系統,ETL是關鍵的一環。說大了,ETL是數據整合解決方案,說小了,就是倒數據的工具。回憶一下工作這么長時間以來,處理數據遷移、轉換的工作倒還真的不少。但是那些工作基本上是一次性工作或者很小數據量。可是在數據倉庫系統中,ETL上升到了一定的理論高度,和原來小打小鬧的工具使用不同了。究竟什么不同,從名字上就可以看到,人家已經將倒數據的過程分成3個步驟,E、T、L分別代表抽取、轉換和裝載。

其實ETL過程就是數據流動的過程,從不同的數據源流向不同的目標數據。但在數據倉庫中。

 

二、PostgreSQL可用的ETL

1.Benetl 是 PostgreSQL 數據庫的一個免費的 ETL 工具,同時也支持 MySQL。用於從包括 csv、txt和 excel 文件中抽取數據進行轉換並導入到數據庫中。

Benetl a free ETL tool

 

2.Kettle PostgreSQL操作的基本介紹

ETL (extract, transform, load)工具是用於數據庫數據遷移清洗處理等操作的工具。

3.其他工具

datastage,informatic,OWB,DTS,SISS

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM