VINS(二)Feature Detection and Tracking


系統入口是feature_tracker_node.cpp文件中的main函數

1. 首先創建feature_tracker節點,從配置文件中讀取信息(parameters.cpp),包括:

  • ROS中發布訂閱的話題名稱;
  • 圖像尺寸;
  • 特征跟蹤參數;
  • 是否需要加上魚眼mask來去除邊緣噪點;
%YAML:1.0

#common parameters
imu_topic: "/imu0"
image_topic: "/cam0/image_raw"

#camera calibration 
model_type: PINHOLE
camera_name: camera
image_width: 752
image_height: 480
distortion_parameters:
   k1: -2.917e-01
   k2: 8.228e-02
   p1: 5.333e-05
   p2: -1.578e-04
projection_parameters:
   fx: 4.616e+02
   fy: 4.603e+02
   cx: 3.630e+02
   cy: 2.481e+02

# Extrinsic parameter between IMU and Camera.
estimate_extrinsic: 1   # 0  Have an accurate extrinsic parameters. We will trust the following imu^R_cam, imu^T_cam, don't change it.
                        # 1  Have an initial guess about extrinsic parameters. We will optimize around your initial guess.
                        # 2  Don't know anything about extrinsic parameters. You don't need to give R,T. We will try to calibrate it. Do some rotation movement at beginning. 
ex_calib_result_path: "/config/euroc/ex_calib_result.yaml"  # If you choose 1 or 2, the extrinsic calibration result will be written vins_folder_path + ex_calib_result_path.                        
#If you choose 0 or 1, you should write down the following matrix.
#Rotation from camera frame to imu frame, imu^R_cam
extrinsicRotation: !!opencv-matrix
   rows: 3
   cols: 3
   dt: d
   data: [0, -1, 0, 
           1, 0, 0, 
           0, 0, 1]
#Translation from camera frame to imu frame, imu^T_cam
extrinsicTranslation: !!opencv-matrix
   rows: 3
   cols: 1
   dt: d
   data: [-0.02,-0.06, 0.01]

#feature traker paprameters
max_cnt: 150            # max feature number in feature tracking
min_dist: 30            # min distance between two features 
freq: 10                # frequence (Hz) of publish tracking result. At least 10Hz for good estimation. If set 0, the frequence will be same as raw image 
F_threshold: 1.0        # ransac threshold (pixel)
show_track: 1           # publish tracking image as topic
equalize: 1             # if image is too dark or light, trun on equalize to find enough features
fisheye: 0              # if using fisheye, trun on it. A circle mask will be loaded to remove edge noisy points

#optimization parameters
max_solver_time: 0.04  # max solver itration time (ms), to guarantee real time
max_num_iterations: 8   # max solver itrations, to guarantee real time
keyframe_parallax: 10.0 # keyframe selection threshold (pixel)

#imu parameters       The more accurate parameters you provide, the better performance
acc_n: 0.2          # accelerometer measurement noise standard deviation. #0.2
gyr_n: 0.02         # gyroscope measurement noise standard deviation.     #0.05
acc_w: 0.0002         # accelerometer bias random work noise standard deviation.  #0.02
gyr_w: 2.0e-5       # gyroscope bias random work noise standard deviation.     #4.0e-5
g_norm: 9.81007     # gravity magnitude


#loop closure parameters
loop_closure: 1   #if you want to use loop closure to minimize the drift, set loop_closure true and give your brief pattern file path and vocabulary file path accordingly;
                     #also give the camera calibration file same as feature_tracker node
pattern_file: "/support_files/brief_pattern.yml"
voc_file: "/support_files/brief_k10L6.bin"
min_loop_num: 25

該config.yaml文件中的其他參數在vins_estimator_node中被讀取,屬於融合算法的參數。

  • 優化參數(最大求解時間以保證實時性,不卡頓;最大迭代次數,避免冗余計算;視差閾值,用於選取sliding window中的關鍵幀);
  • imu參數,包括加速度計陀螺儀的測量噪聲標准差、零偏隨機游走噪聲標准差,重力值(imu放火星上需要改變);
  • imu和camera之間的外參R,t;可選(0)已知精確的外參,運行中無需改變,(1)已知外參初值,運行中優化,(2)什么都不知道,在線初始化中標定
  • 閉環參數,包括brief描述子的pattern文件(前端視覺使用光流跟蹤,不需要計算描述子),針對場景訓練好的DBow二進制字典文件;

2. 監聽IMAGE_TOPIC, 有圖像信息發布到IMAGE_TOPIC上時,執行回調函數:

ros::Subscriber sub_img = n.subscribe(IMAGE_TOPIC, 100, img_callback);

 

 

3. img_callback()

前端視覺的算法基本在這個回調函數中,步驟為:

  1. 頻率控制,保證每秒鍾處理的image不多於FREQ;

  2. 對於單目:

    1). readImage;

    2). showUndistortion(可選);

    3). 將特征點矯正(相機模型camodocal)后歸一化平面的3D點(此時沒有尺度信息,3D點p.z=1),像素2D點,以及特征的id,封裝成ros的sensor_msgs::PointCloud消息類型; 

  3. 將處理完的圖像信息用PointCloud和Image的消息類型,發布到"feature"和"feature_img"的topic:

pub_img = n.advertise<sensor_msgs::PointCloud>("feature", 1000);
pub_match = n.advertise<sensor_msgs::Image>("feature_img",1000);

 

4. 包含的視覺算法:

1. CLAHE(Contrast Limited Adaptive Histogram Equalization)

cv::Ptr<cv::CLAHE> clahe = cv::createCLAHE(3.0, cv::Size(8, 8));

2. Optical Flow(光流追蹤)

cv::calcOpticalFlowPyrLK(cur_img, forw_img, cur_pts, forw_pts, status, err, cv::Size(21, 21), 3);

3. 根據匹配點計算Fundamental Matrix, 然后用Ransac剔除不符合Fundamental Matrix的外點

cv::findFundamentalMat(un_prev_pts, un_forw_pts, cv::FM_RANSAC, F_THRESHOLD, 0.99, status);

4. 特征點檢測:goodFeaturesToTrack, 使用Shi-Tomasi的改進版Harris corner

cv::goodFeaturesToTrack(forw_img, n_pts, MAX_CNT - forw_pts.size(), 0.1, MIN_DIST, mask);

 特征點之間保證了最小距離30個像素,跟蹤成功的特征點需要經過rotation-compensated旋轉補償的視差計算,視差在30個像素以上的特征點才會去參與三角化和后續的優化,保證了所有的特征點質量都是比較高的,同時降低了計算量。


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM