學習Spark——那些讓你精疲力盡的坑


這一個月我都干了些什么……
工作上,還是一如既往的寫bug並不亦樂乎的修bug。學習上,最近看了一些非專業書籍,時常在公眾號(JackieZheng)上寫點小感悟,我剛稍稍瞄了下,最近五篇居然都跟技術無關,看來我與本行業已經是漸行漸遠了。
所以,趁着這篇博客,重拾自己,認清自己,要時刻謹記我是一名碼農。不過,摸着良心說,最近的技術方面也是有所感悟和積累的,比如如何寫好設計文檔,如何使用延時隊列,如何使用防刷技術等等。當然了,今天我們還是沿着“學習Spark”這條路繼續走下去。


上篇主要介紹了在Mac下如何下載安裝Hadoop、Scala和Spark並成功啟動環境。文章結尾慶幸沒有遇到大坑,事實證明不是沒有遇到,只是時間還沒到,這篇就介紹下自己遇到的各種坑。我不知道各位是否遇到過並能輕松解決,反正我是被這些小問題搞得精疲力盡,故在此總結以備忘。

1.1 Scala與Intellij集成報錯

在Scala安裝成功后,准備到Intellij上寫Scala代碼,發現Scala都配好了(關於如何配置,網上資料很多),結果運行Scala程序時報錯。

錯誤:Error:scalac: Multiple 'scala-library*.jar' files (scala-library.jar, scala-library.jar, scala-library.jar) in Scala compiler classpath in Scala SDK scala-sdk-2.12.2

解決方法:OverStackflow上找到了思路。在Intellij中打開project structure,刪除已有的Scala的路徑(我的Scala是安裝在/usr/local/Cellar/scala/2.12.2路徑下的),重新添加/usr/local/Cellar/scala/2.12.2/idea/lib目錄即可。
改動前

改動后


###1.2 Scala語法Intellij不認 在Intellij中寫了一個Scala的HelloWorld,代碼如下
/**
 * Created by jackie on 17/5/7.
 */
package com.jackie.scala.s510

object HelloWorld {
  def main(args: Array[String]): Unit = {
    println("hello world")

    println(increaseAnother(5));

    println(Array(1,2,3,4).map{(x:Int)=>x+1}.mkString(","));

    println(Array(1,2,3,4) map{(x:Int)=>x+1} mkString(","));

    println(Array(1,2,3,4) map{(x:Int)=>x+1} mkString(","));

    // test object
    var person = new Person()
    person.name_=("john") // name_=()對應java中的setter方法
    println("Person name:" + person.name)

    person.name = "Jackie"
    println("Person name:" + person.name)

    var mp = new MyPerson()
    mp.name_("alihaha")
    println("MyPerson name:" + person.name)

    var pwp = new PersonWithParam("Jackie", 18)
    println("PersonWithParam:" + pwp.toString())

  }

  def increaseAnother(x: Int): Int = x + 1


}


運行的時候,報錯mkString無法識別。

錯誤:mkString can't be resolved
解決方法:需要交代下我各個環境的版本參數,Intellij-14.0, jdk-8, scala-2.12.2。但是在Intellij中能選擇的Scala最高版本只有2.11,所有后來將Intellij升級到2017.1版本,這時候還報錯Error:scalac: Error: org.jetbrains.jps.incremental.scala.remote.ServerException,然后在Intellij中打開project structure,將scala由2.12.2換成2.11.7,問題解決。


1.3 Spark與Intellij集成的問題

Spark環境都安裝好了,所以想在Intellij中運行Spark程序,但是在添加了Spark的相關依賴后,發現無法編譯通過。
錯誤:Exception NoSuchMethodError: com.google.common.collect.MapMaker.keyEquivalence
解決方法:實現聲明,之前在maven中一直引用的都是spark-core2.10,這時候報錯,我定位問題出在Guava上,然后找到所有間接依賴了Guava的jar,都exclude,問題還是沒有解決。期間添加了Spark的很多依賴,試了都不行,最后試了下Spark-core2.11,問題解決(有的時候版本的兼容性真的很坑)。



1.4 hadoop上傳本地文件到HDFS

如果想將本地文件上傳到HDFS,使用hadoop fs -put localDir hdfsDir,前提是保證hadoop啟動。
錯誤:

jackie@jackies-MacBook-Pro:~|⇒  hadoop fs -put ~/Documents/doc/README.md /
17/05/13 10:56:39 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
17/05/13 10:56:40 WARN ipc.Client: Failed to connect to server: localhost/127.0.0.1:8020: try once and fail.
java.net.ConnectException: Connection refused
	at sun.nio.ch.SocketChannelImpl.checkConnect(Native Method)
	at sun.nio.ch.SocketChannelImpl.finishConnect(SocketChannelImpl.java:717)
	at org.apache.hadoop.net.SocketIOWithTimeout.connect(SocketIOWithTimeout.java:206)
	at org.apache.hadoop.net.NetUtils.connect(NetUtils.java:531)
	at org.apache.hadoop.net.NetUtils.connect(NetUtils.java:495)
	at org.apache.hadoop.ipc.Client$Connection.setupConnection(Client.java:681)
	at org.apache.hadoop.ipc.Client$Connection.setupIOstreams(Client.java:777)
	at org.apache.hadoop.ipc.Client$Connection.access$3500(Client.java:409)
	at org.apache.hadoop.ipc.Client.getConnection(Client.java:1542)
	at org.apache.hadoop.ipc.Client.call(Client.java:1373)
	at org.apache.hadoop.ipc.Client.call(Client.java:1337)
	at org.apache.hadoop.ipc.ProtobufRpcEngine$Invoker.invoke(ProtobufRpcEngine.java:227)
	at org.apache.hadoop.ipc.ProtobufRpcEngine$Invoker.invoke(ProtobufRpcEngine.java:116)
	at com.sun.proxy.$Proxy10.getFileInfo(Unknown Source)
	at org.apache.hadoop.hdfs.protocolPB.ClientNamenodeProtocolTranslatorPB.getFileInfo(ClientNamenodeProtocolTranslatorPB.java:787)
	at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
	at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
	at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
	at java.lang.reflect.Method.invoke(Method.java:498)
	at org.apache.hadoop.io.retry.RetryInvocationHandler.invokeMethod(RetryInvocationHandler.java:398)
	at org.apache.hadoop.io.retry.RetryInvocationHandler$Call.invokeMethod(RetryInvocationHandler.java:163)
	at org.apache.hadoop.io.retry.RetryInvocationHandler$Call.invoke(RetryInvocationHandler.java:155)
	at org.apache.hadoop.io.retry.RetryInvocationHandler$Call.invokeOnce(RetryInvocationHandler.java:95)
	at org.apache.hadoop.io.retry.RetryInvocationHandler.invoke(RetryInvocationHandler.java:335)
	at com.sun.proxy.$Proxy11.getFileInfo(Unknown Source)
	at org.apache.hadoop.hdfs.DFSClient.getFileInfo(DFSClient.java:1700)
	at org.apache.hadoop.hdfs.DistributedFileSystem$27.doCall(DistributedFileSystem.java:1436)
	at org.apache.hadoop.hdfs.DistributedFileSystem$27.doCall(DistributedFileSystem.java:1433)
	at org.apache.hadoop.fs.FileSystemLinkResolver.resolve(FileSystemLinkResolver.java:81)
	at org.apache.hadoop.hdfs.DistributedFileSystem.getFileStatus(DistributedFileSystem.java:1433)
	at org.apache.hadoop.fs.Globber.getFileStatus(Globber.java:64)
	at org.apache.hadoop.fs.Globber.doGlob(Globber.java:282)
	at org.apache.hadoop.fs.Globber.glob(Globber.java:148)
	at org.apache.hadoop.fs.FileSystem.globStatus(FileSystem.java:1685)
	at org.apache.hadoop.fs.shell.PathData.expandAsGlob(PathData.java:326)
	at org.apache.hadoop.fs.shell.CommandWithDestination.getRemoteDestination(CommandWithDestination.java:195)
	at org.apache.hadoop.fs.shell.CopyCommands$Put.processOptions(CopyCommands.java:256)
	at org.apache.hadoop.fs.shell.Command.run(Command.java:164)
	at org.apache.hadoop.fs.FsShell.run(FsShell.java:315)
	at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:76)
	at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:90)
	at org.apache.hadoop.fs.FsShell.main(FsShell.java:378)
put: Call From jackies-macbook-pro.local/192.168.73.56 to localhost:8020 failed on connection exception: java.net.ConnectException: Connection refused; For more details see:  http://wiki.apache.org/hadoop/ConnectionRefused

解決方法:進入hadoop安裝目錄(我的是/usr/local/Cellar/hadoop)進入sbin下執行./start-all.sh啟動hadoop服務。


1.5 Spark啟動

上篇在配置Spark時沒有配置spark-defaults.conf文件,所以在Spark安裝目錄下(我的是/usr/local/Spark)啟動./start-all.sh出錯。
錯誤:

spark-shell
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel).
17/05/13 13:42:49 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
17/05/13 13:42:51 WARN StandaloneAppClient$ClientEndpoint: Failed to connect to master 192.168.73.56:7077
org.apache.spark.SparkException: Exception thrown in awaitResult
	at org.apache.spark.rpc.RpcTimeout$$anonfun$1.applyOrElse(RpcTimeout.scala:77)
	at org.apache.spark.rpc.RpcTimeout$$anonfun$1.applyOrElse(RpcTimeout.scala:75)
	at scala.runtime.AbstractPartialFunction.apply(AbstractPartialFunction.scala:36)
	at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:59)
	at org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:59)
	at scala.PartialFunction$OrElse.apply(PartialFunction.scala:167)
	at org.apache.spark.rpc.RpcTimeout.awaitResult(RpcTimeout.scala:83)
	at org.apache.spark.rpc.RpcEnv.setupEndpointRefByURI(RpcEnv.scala:88)
	at org.apache.spark.rpc.RpcEnv.setupEndpointRef(RpcEnv.scala:96)
	at org.apache.spark.deploy.client.StandaloneAppClient$ClientEndpoint$$anonfun$tryRegisterAllMasters$1$$anon$1.run(StandaloneAppClient.scala:106)
	at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
	at java.util.concurrent.FutureTask.run(FutureTask.java:266)
	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
	at java.lang.Thread.run(Thread.java:745)
Caused by: java.io.IOException: Failed to connect to /192.168.73.56:7077

解決方法:將Spark安裝目錄下的conf中的spark-defaults.conf.template拷貝一份出來,重命名為spark-defaults.conf,按照https://sanwen8.cn/p/3bac5Bj.html配置好,再啟動Spark,發現還是報錯

https://sanwen8.cn/p/3bac5Bj.html Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel).
17/05/13 14:19:12 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
17/05/13 14:19:15 ERROR SparkContext: Error initializing SparkContext.
java.net.ConnectException: Call From jackies-MacBook-Pro.local/192.168.73.56 to 192.168.73.56:8021 failed on connection exception: java.net.ConnectException: Connection refused; For more details see:  http://wiki.apache.org/hadoop/ConnectionRefused
	at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)

於是按照StackOverflow,將spark-defaults.conf中的spark.eventLog.enabled由true改為false,之后再啟動成功。
注意:這里我反復配置了localhost和自己的ip,來回切換,最終證明只要在/etc/hosts中配置好ip對應映射的名稱,可以直接用名稱即可,不用寫ip,而且要保持hadoop中的配置文件和spark中的配置文件要一致,否則針對會精疲力盡。


1.6 將運算任務交給Spark運行的報錯

運行下面的一個Demo程序

package com.jackie.scala.s513;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import scala.Tuple2;

import java.util.Arrays;
import java.util.Iterator;
import java.util.List;
import java.util.regex.Pattern;

/**
 * Created by jackie on 17/5/13.
 */
public class Simple
{
    private static final Pattern SPACE = Pattern.compile(" ");

    public static void main(String[] args) throws Exception {

        //創建一個RDD對象
        SparkConf conf=new SparkConf().setAppName("Simple").setMaster("local");

        //創建spark上下文對象,是數據的入口
        JavaSparkContext spark=new JavaSparkContext(conf);

        //獲取數據源
        JavaRDD<String> lines = spark.textFile("hdfs://jackie:8020/");

        /**
         * 對於從數據源得到的DStream,用戶可以在其基礎上進行各種操作,
         * 對於當前時間窗口內從數據源得到的數據首先進行分割,
         * 然后利用Map和ReduceByKey方法進行計算,當然最后還有使用print()方法輸出結果;
         */
        JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
            @Override
            public Iterator<String> call(String s) {
                return Arrays.asList(SPACE.split(s)).iterator();
            }
        });


        //使用RDD的map和reduce方法進行計算
        JavaPairRDD<String, Integer> ones = words.mapToPair(
                new PairFunction<String, String, Integer>() {
                    @Override
                    public Tuple2<String, Integer> call(String s) {
                        return new Tuple2<String, Integer>(s, 1);
                    }
                });


        JavaPairRDD<String, Integer> counts = ones.reduceByKey(
                new Function2<Integer, Integer, Integer>() {
                    @Override
                    public Integer call(Integer i1, Integer i2) {
                        return i1 + i2;
                    }
                });

        List<Tuple2<String, Integer>> output = counts.collect();
        for (Tuple2<?,?> tuple : output) {
            //輸出計算結果
            System.out.println(tuple._1() + ": " + tuple._2());
        }


        spark.stop();
    }
}

這個程序需要讀取HDFS上根目錄下的README.md文件,但是在此之前我執行了"hadoop namenode -format"(注意,這個操作引起了后面的一系列問題)。所以就准備重新使用hadoop fs -put localDir hdfsDir上傳README.md,結果這時候報錯
錯誤:

hadoop fs -put /Users/jackie/Documents/doc/README.md /
17/05/13 15:47:15 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
17/05/13 15:47:16 WARN hdfs.DataStreamer: DataStreamer Exception
org.apache.hadoop.ipc.RemoteException(java.io.IOException): File /README.md._COPYING_ could only be replicated to 0 nodes instead of minReplication (=1).  There are 0 datanode(s) running and no node(s) are excluded in this operation.
	at org.apache.hadoop.hdfs.server.blockmanagement.BlockManager.chooseTarget4NewBlock(BlockManager.java:1733)
	at org.apache.hadoop.hdfs.server.namenode.FSDirWriteFileOp.chooseTargetForNewBlock(FSDirWriteFileOp.java:265)
	at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.getAdditionalBlock(FSNamesystem.java:2496)
	at org.apache.hadoop.hdfs.server.namenode.NameNodeRpcServer.addBlock(NameNodeRpcServer.java:828)

后來發現是datanode沒有啟動,然后開始找datanode沒有啟動的原因,在這里http://www.aboutyun.com/thread-7931-1-1.html
文中解釋:當我們執行文件系統格式化時,會在namenode數據文件夾(即配置文件中dfs.name.dir在本地系統的路徑)中保存一個current/VERSION文件,記錄namespaceID,標識了所格式化的 namenode的版本。如果我們頻繁的格式化namenode,那么datanode中保存(即配置文件中dfs.data.dir在本地系統的路徑)的current/VERSION文件只是你第一次格式化時保存的namenode的ID,因此就會造成datanode與namenode之間的id不一致。

解決方法:采取的做法是根據執行hadoop namenode –format得到成功的提示。

這時候再執行jps命令,我們就可以看到datanode了

類似的,同樣是在執行hadoop fs -put /Users/jackie/Documents/doc/README.md /是報錯如下

hadoop fs -put /Users/jackie/Documents/doc/README.md /
17/05/15 09:51:04 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
17/05/15 09:51:05 WARN ipc.Client: Failed to connect to server: jackie/192.168.73.56:8020: try once and fail.
java.net.ConnectException: Connection refused
	at sun.nio.ch.SocketChannelImpl.checkConnect(Native Method)
	at sun.nio.ch.SocketChannelImpl.finishConnect(SocketChannelImpl.java:717)
	at org.apache.hadoop.net.SocketIOWithTimeout.connect(SocketIOWithTimeout.java:206)
	at org.apache.hadoop.net.NetUtils.connect(NetUtils.java:531)
	at org.apache.hadoop.net.NetUtils.connect(NetUtils.java:495)
	at org.apache.hadoop.ipc.Client$Connection.setupConnection(Client.java:681)
	at org.apache.hadoop.ipc.Client$Connection.setupIOstreams(Client.java:777)
	at org.apache.hadoop.ipc.Client$Connection.access$3500(Client.java:409)

一開始以為是ip的配置問題,但是反復修改無果,后來發現使用jps時,沒有啟動namenode,於是在網上找http://blog.csdn.net/bychjzh/article/details/7830508
於是在/usr/local/Cellar/hadoop/hdfs下刪除原來在core-site.xml中配置的tmp目錄,然后新建了hadoop_tmp目錄,並在core-site.xml中修改成

<property>
     <name>hadoop.tmp.dir</name>
<value>/usr/local/Cellar/hadoop/hdfs/hadoop_tmp</value>
    <description>A base for other temporary directories.</description>
  </property>

並執行hadoop namenode –format,最后在使用start-all.sh啟動所有的服務,執行上傳文件成功

如果您覺得閱讀本文對您有幫助,請點一下“推薦”按鈕,您的“推薦”將是我最大的寫作動力!如果您想持續關注我的文章,請掃描二維碼,關注JackieZheng的微信公眾號,我會將我的文章推送給您,並和您一起分享我日常閱讀過的優質文章。


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM