''' Created on May 24, 2017 @author: p0079482 ''' #使用程序輸出日志 import tensorflow as tf with tf.Session() as sess: tf.initialize_all_variables().run() for i in range(TRAINING_STEPS): xs,ys=mnist.train.next_batch(BATCH_SIZE) #每1000輪記錄一次運行狀態 if i%1000==0: #配置運行時需要記錄的信息 run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) #運行時記錄運行信息的proto run_metadata=tf.RunMetadata() #將配置信息和記錄運行信息的proto傳入運行的過程,從而記錄運行時每一個節點的時間、空間開銷信息 _,loss_value,step=sess.run([train_op,loss,global_step], feed_dict={x:xs,y_:ys}, options=run_options,run_metadata=run_metadata) #將節點在運行時的信息寫入日志文件 train_writer.add_run_metadata(run_metadata,'step%03d'%i) print("After %d training step(s),loss on training batch is %g."%(step,loss_value)) else: _,loss_value,step=sess.run([train_op,loss,global_step],feed_dict={x:xs,y_:ys})