CAS操作原理分析


 
一、CAS簡單介紹
    CAS:Compare and Swap, 翻譯成比較並交換。
    java.util.concurrent包中借助CAS實現了區別於synchronouse同步鎖的一種樂觀鎖。synchronouse是一種悲觀鎖,它會導致其他所有需要鎖的線程掛起。
 
二、CAS原理
    CAS有3個操作數,內存值V,舊的預期值A,要修改的新值B。當且僅當預期值A和內存值V相同時,將內存值V修改為B,否則什么都不做。
    CAS采用的是一種非阻塞算法(nonblocking algorithms),一個線程的失敗或者掛起不應該影響其他線程的失敗或掛起的算法。
 
 
    CAS通過調用JNI的代碼實現Java的非阻塞算法。其它原子操作都是利用類似的特性完成的。JNI:Java Native Interface為JAVA本地調用,允許java調用其他語言。
 
拿AtomicInteger來舉例,
    private volatile int value;
    1.它有個volatile的成員變量 value,通過volatile關鍵字來保證多線程間數據的可見性的。
        所以在沒有鎖的機制下可能需要借助volatile原語,保證線程間的數據是可見的(共享的)。這樣才獲取變量的值的時候才能直接讀取。
public final int get() {
        return value;
    }
    2.通過CAS操作來實現+1操作的,下面compareAndSet()方法就是
    public final int incrementAndGet() {
    for (;;) {
        int current = get();
        int next = current + 1;
        if (compareAndSet(current, next))
            return next;
    }
}
 
而compareAndSet利用JNI來完成CPU指令的操作
 
public final boolean compareAndSet(int expect, int update) {   
    return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
    }
 
而compareAndSwapInt就是借助C來調用CPU底層指令實現的
 
intel x86處理器的源代碼的片段:
 
// Adding a lock prefix to an instruction on MP machine
// VC++ doesn't like the lock prefix to be on a single line
// so we can't insert a label after the lock prefix.
// By emitting a lock prefix, we can define a label after it.
#define LOCK_IF_MP(mp) __asm cmp mp, 0  \
                       __asm je L0      \
                       __asm _emit 0xF0 \
                       __asm L0:
 
inline jint     Atomic::cmpxchg    (jint     exchange_value, volatile jint*     dest, jint     compare_value) {
  // alternative for InterlockedCompareExchange
  int mp = os::is_MP();
  __asm {
    mov edx, dest
    mov ecx, exchange_value
    mov eax, compare_value
    LOCK_IF_MP(mp)
    cmpxchg dword ptr [edx], ecx
  }
}
 
根據CPU處理器源代碼所示,程序會根據當前處理器的類型來決定是否為cmpxchg指令添加lock前綴。如果程序是在多處理器上運行,就為cmpxchg指令加上lock前綴(lock cmpxchg)。反之,如果程序是在單處理器上運行,就省略lock前綴(單處理器自身會維護單處理器內的順序一致性,不需要lock前綴提供的內存屏障效果)。
 
 
三、關於CPU的鎖有如下3種:
 
  1 處理器自動保證基本內存操作的原子性
 
  首先處理器會自動保證基本的內存操作的原子性。處理器保證從系統內存當中讀取或者寫入一個字節是原子的,意思是當一個處理器讀取一個字節時,其他處理器不能訪問這個字節的內存地址。奔騰6和最新的處理器能自動保證單處理器對同一個緩存行里進行16/32/64位的操作是原子的,但是復雜的內存操作處理器不能自動保證其原子性,比如跨總線寬度,跨多個緩存行,跨頁表的訪問。但是處理器提供總線鎖定和緩存鎖定兩個機制來保證復雜內存操作的原子性。
 
  2 使用總線鎖保證原子性
 
  第一個機制是通過總線鎖保證原子性。如果多個處理器同時對共享變量進行讀改寫(i++就是經典的讀改寫操作)操作,那么共享變量就會被多個處理器同時進行操作,這樣讀改寫操作就不是原子的,操作完之后共享變量的值會和期望的不一致,舉個例子:如果i=1,我們進行兩次i++操作,我們期望的結果是3,但是有可能結果是2。
 
要保證讀改寫共享變量的操作是原子的,就必須保證CPU1讀改寫共享變量的時候,CPU2不能操作緩存了該共享變量內存地址的緩存。
 
  處理器使用總線鎖就是來解決這個問題的。所謂總線鎖就是使用處理器提供的一個LOCK#信號,當一個處理器在總線上輸出此信號時,其他處理器的請求將被阻塞住,那么該處理器可以獨占使用共享內存。
 
  3 使用緩存鎖保證原子性
 
  第二個機制是通過緩存鎖定保證原子性。在同一時刻我們只需保證對某個內存地址的操作是原子性即可,但總線鎖定把CPU和內存之間通信鎖住了,這使得鎖定期間,其他處理器不能操作其他內存地址的數據,所以總線鎖定的開銷比較大,最近的處理器在某些場合下使用緩存鎖定代替總線鎖定來進行優化。
 
    頻繁使用的內存會緩存在處理器的L1,L2和L3高速緩存里,那么原子操作就可以直接在處理器內部緩存中進行,並不需要聲明總線鎖,在奔騰6和最近的處理器中可以使用“緩存鎖定”的方式來實現復雜的原子性。所謂“緩存鎖定”就是如果緩存在處理器緩存行中內存區域在LOCK操作期間被鎖定,當它執行鎖操作回寫內存時,處理器不在總線上聲言LOCK#信號,而是修改內部的內存地址,並允許它的緩存一致性機制來保證操作的原子性,因為緩存一致性機制會阻止同時修改被兩個以上處理器緩存的內存區域數據,當其他處理器回寫已被鎖定的緩存行的數據時會起緩存行無效,在例1中,當CPU1修改緩存行中的i時使用緩存鎖定,那么CPU2就不能同時緩存了i的緩存行。
 
  但是有兩種情況下處理器不會使用緩存鎖定。第一種情況是:當操作的數據不能被緩存在處理器內部,或操作的數據跨多個緩存行(cache line),則處理器會調用總線鎖定。第二種情況是:有些處理器不支持緩存鎖定。對於Inter486和奔騰處理器,就算鎖定的內存區域在處理器的緩存行中也會調用總線鎖定。
 
 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM