Python 與 C/C++ 交互的幾種方式


  python作為一門腳本語言,其好處是語法簡單,很多東西都已經封裝好了,直接拿過來用就行,所以實現同樣一個功能,用Python寫要比用C/C++代碼量會少得多。但是優點也必然也伴隨着缺點(這是肯定的,不然還要其他語言干嘛),python最被人詬病的一個地方可能就是其運行速度了。這這是大部分腳本語言共同面對的問題,因為沒有編譯過程,直接逐行執行,所以要慢了一大截。所以在一些對速度要求很高的場合,一般都是使用C/C++這種編譯型語言來寫。但是很多時候,我們既想使用python的簡介優美,又不想損失太多的性能,這個時候有沒有辦法將python與C/C++結合到一起呢?這樣在性能與速度要求不高的地方,可以用pyhton寫,而關鍵的運算部分用C/C++寫,這樣就太好了。python在做科學計算或者數據分析時,這是一個非常普遍的需求。要想實現這個功能,python為我們提供了不止一種解決辦法。下面我就逐一給大家介紹。

  一、Cython 混合python與C

  官方網址:http://docs.cython.org/en/latest/src/quickstart/overview.html。首先來看看cython的官方介紹吧。

[Cython] is a programming language that makes writing C extensions for the Python language as easy as Python itself. It aims to become a superset of the [Python]language which gives it high-level,  object-oriented, functional, and dynamic programming. Its main feature on top of these is support for optional static type declarations as part of the language. The source code gets translated into optimized C/C++ code and compiled as Python extension modules. This allows for both very fast program execution and tight integration with external C libraries, while keeping up the high programmer productivity for which the Python language is well known.

簡單來說,cython就是一個內置了c數據類型的python,它是一個python的超集,兼容幾乎所有的純python代碼,但是又可以使用c的數據類型。這樣就可以同時使用c庫,又不失python的優雅。

好了,不講太多廢話,直接來看cython如何使用吧。這里的介紹大部分來自官網,由於cython涉及到的東西還比較多,所以這里只是簡單的入門介紹,詳細的信息請移步英文官網。

使用cython有兩種方式:第一個是編譯生成Python擴展文件(有點類似於dll,即動態鏈接庫),可以直接import使用。第二個是使用jupyter notebook或sage notebook 內聯 cython代碼。

先看第一種。還是舉最經典的hello world的例子吧。新建一個hello.pyx文件,定義一個hello函數如下:

def hello(name):
    print("Hello %s." % name)

然后,我們來寫一個setup.py 文件(寫python擴展幾乎都要寫setup.py文件,我之前也簡單介紹過怎么寫)如下:

 1 #!/usr/bin/env python
 2 # -*- coding: utf-8 -*-
 3 # @Time   : 2017/5/8 9:09
 4 # @Author : Lyrichu
 5 # @Email  : 919987476@qq.com
 6 # @File   : setup.py
 7 '''
 8 @Description: setup.py for hello.pyx
 9 '''
10 from Cython.Build import cythonize
11 from distutils.core import setup
12 
13 # 編寫setup函數
14 setup(
15     name = "Hello",
16     ext_modules = cythonize("hello.pyx")
17 )

其中 ext_modules 里面寫你要 編譯的.pyx文件名字。OK,所有工作都完成了。接下來,進入cmd,切換到setup.py 所在的文件,然后執行命令: python setup.py build_ext --inplace 就會編譯生成一個build 文件夾以及一個.pyd文件了,這個pyd文件就是python的動態擴展庫,--inplace 的意思是在當前文件目錄下生成.pyd文件,不加這一句就會在build文件夾中生成。截圖如下:

圖 1

可以看出,除了生成了一個pyd文件之外,還生成了一個.c文件。test.py是我們用來測試的文件,在里面寫如下內容:

from hello import hello
hello("lyric")

從hello 模塊導入 hello函數,然后直接調用就可以了。結果輸出 Hello lyric.

再來看如何 在 jupyter notebook中使用cython。如果你裝過ipython,一個升級版的python交互式環境,你應該聽過 ipyhton notebook的大名,現在它升級了,改名叫jupyter notebook 了。簡單來說,這個就是一個可以在網頁環境下交互式使用python的工具,不僅可以實時看到計算結果,還可以直接展示表格,圖片等,功能還是非常強大的。首先你得安裝jupyter notebook.我印象中安裝了ipython之后應該就會帶了jupyter了。如果沒有,可以直接 pip install jupyter .然后輸入命令 jupyter notebook 就會在瀏覽器中打開jupyter了。如下圖2 所示:

圖 2

點擊右上角的new按鈕,可以選擇新建一個文本文件或者文件夾,markdown或者python文件,這里我們選擇新建一個pyhton 文件,然后就會轉到一個新的窗口了,如下圖3:

圖 3

In[]:和ipython一樣,就代表着我們要輸入代碼的地方,輸入代碼之后,點擊向右的三角形符號,就會執行代碼了。

首先輸入 %load_ext cython ,然后執行,%開頭的語句是jupyter的魔法命令,%是行命令,%%是單元命令,具體不多說,有空給大家專門介紹一下notebook的使用。

接下來輸入:

1 %%cython
2 cdef int a = 0
3 for i in range(10):
4     a += i
5 print(a)

%%cython 表明將cython內嵌到jupyter,cdef 是cython的關鍵字,用於定義c類型,這里將a定義為c中的int類型,並且初始化為0.

然后后面的循環就是累加0到9的意思,最后輸出45.

另外,我們如果想分析代碼 的執行情況,可以輸入 %%cython --annotate 命令,這樣就可以輸出結果的同時,也輸出 詳細的代碼執行情況報告了。截圖如圖4 所示:

圖 4

jupyter notebook 可以內嵌cython,不用我們手寫setup.py 文件,省去了編譯的過程,方便了cython的使用,所以不是正式做項目,只是寫一寫小東西用jupyter+cython還是非常方便的。

前面提到了 cdef,再舉一個稍微復雜點的例子吧。還是引用官網的例子,寫一個算積分的函數.新建 integrate.pyx 文件,寫入如下內容:

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time   : 2017/5/8 9:26
# @Author : Lyrichu
# @Email  : 919987476@qq.com
# @File   : integrate.py
'''
@Description: 積分運算,使用 cython cdef 關鍵字
'''
def f(double x):
    return x**2 - x

def integrate_f(double a,double b,int N):
    cdef int i
    cdef double s,dx
    s = 0
    dx = (b-a)/N
    for i in range(N):
        s += f(a + i*dx)*dx
    return s # 返回定積分

這段代碼應該也是比較好理解的,f()函數是被積函數,a,b是積分的上下限,N是分割小矩形的個數,注意這里將 變量i,s,dx全部都用cdef 聲明為c類型了,一般來說,在需要密集計算的地方比如循環或者復雜運算,可以將對應的變量聲明為c類型,可以加快運行速度。

然后和上面一樣編寫 setup.py ,就是把 pyx的文件名改一下,代碼我就不貼了。然后python setup.py build_ext --inplace 執行。得到pyd文件,編寫測試文件test.py如下:

 1 #!/usr/bin/env python
 2 # -*- coding: utf-8 -*-
 3 # @Time   : 2017/5/8 9:35
 4 # @Author : Lyrichu
 5 # @Email  : 919987476@qq.com
 6 # @File   : test.py
 7 '''
 8 @Description: 測試使用cython 混合c與python的integrate 函數與純python寫的integrate函數速度上的差異
 9 '''
10 from integrate import integrate_f
11 import time
12 
13 a = 1 # 積分區間下界
14 b = 2 # 積分區間上界
15 N = 10000 # 划分區間個數
16 
17 # 使用純python代碼寫的integrate函數
18 def py_f(x):
19     return x**2 - x
20 
21 def py_integrate_f(a,b,N):
22     dx = (b-a)/N
23     s = 0
24     for i in range(N):
25         s += py_f(a + i*dx)*dx
26     return s
27 
28 start_time1 = time.time()
29 integrate_f_res = integrate_f(a,b,N)
30 print("integrate_f_res = %s" % integrate_f_res)
31 end_time1 = time.time()
32 print(u"cython 版本計算耗時:%.8f" % (end_time1 - start_time1))
33 
34 start_time2 = time.time()
35 py_integrate_f_res = py_integrate_f(a,b,N)
36 print("py_integrate_f_res = %s" % py_integrate_f_res)
37 end_time2 = time.time()
38 print(u"python 版本計算耗時:%.8f" % (end_time2 - start_time2))

上面的代碼,我們重新使用python寫了一個積分函數py_integrate_f,與pyd中的integrate_f 函數進行運算對比,結果如下(圖5):

圖5

可以看出,使用了cython的版本比純Python的版本大概快了4、5倍的樣子,而這僅僅是將幾個變量改為c類型的結果,可見,cython確實可以方便地對python與c進行混合,獲得速度上的提升,又不失去Python的簡潔優美。

最后再來說下cython 如何調用c libraries. C 語言 stdlib 庫有一個 atoi函數,可以將字符串轉化為整數,math庫有一個sin函數,我們就以這兩個函數為例。新建 calling_c.pyx 文件,文件內容如下:

from libc.stdlib cimport atoi
from libc.math cimport sin

def parse_char_to_int(char * s):
    assert s is not NULL,"byte string value is NULL"
    return atoi(s)

def f_sin_squared(double x):
    return sin(x*x)

前兩行導入了C語言中的函數,然后我們自定義了兩個函數,parse_char_to_int 可以將字符串轉換為整數,f_sin_squared 計算 x平方的sin函數值。寫 setup.py 文件,和之前差不多,但是要注意的是,在unix系統下,math庫默認是不鏈接的,所以需要指明其位置,那么在unix系統下,setup.py 文件的內容就需要增加Extension 一項,如下:

from distutils.core import setup
from distutils.extension import Extension
from Cython.Build import cythonize

ext_modules=[
    Extension("calling_c",
              sources=["calling_c.pyx"],
              libraries=["m"] # Unix-like specific
    )
]

setup(
  name = "Calling_c",
  ext_modules = cythonize(ext_modules)
)

然后直接編即可。test.py文件如下:

 1 #!/usr/bin/env python
 2 # -*- coding: utf-8 -*-
 3 # @Time   : 2017/5/8 12:21
 4 # @Author : Lyrichu
 5 # @Email  : 919987476@qq.com
 6 # @File   : test.py
 7 '''
 8 @Description: test file
 9 '''
10 from calling_c import f_sin_squared,parse_char_to_int
11 str = "012"
12 str_b = bytes(str,encoding='utf-8')
13 n = parse_char_to_int(str_b)
14 print("n = %d" %n)
15 from math import pi,sqrt
16 x = sqrt(pi/2)
17 res = f_sin_squared(x)
18 print("sin(pi/2)=%f" % res)

需要注意的是,Python字符串不能直接傳入 parse_char_to_int 函數,需要將其轉換為 bytes 類型再傳入。運行結果為:

n = 12
sin(pi/2)=1.000000

如果不想通過libc導入c語言模塊,cython也允許我們自己聲明c函數原型來導入,一個例子如下:

# 自己聲明c函數原型
cdef extern from "math.h":
    cpdef double cos(double x)

def f_cos(double x):
    return cos(x)

使用了 extern 關鍵字。

每次都編寫setup.py 文件,然后編譯,略顯麻煩。cython還提供了一種更簡單的方法:pyximport。通過導入pyximport(安裝cython時會自動安裝),在沒有引入額外的c庫的情況下,可以直接調用pyx中的函數,更為直接與方便。以前面的hello 模塊為例,編寫好hello.py文件之后,編寫一個pyximport_test.py 文件,文件內容如下:

import pyximport
pyximport.install()
import hello
hello.hello("lyric")

直接運行就會發現,確實可以正確導入hello模塊。

cython的更多內容,請大家自行訪問官網查看。

其他python與c/c++ 混合編程的方式主要還有 使用 ctypes,cffi模塊以及swig。本來想一起寫的,想想還是分開寫吧,不然太長了。后續會陸續更新,敬請關注。


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM