Spark on YARN模式的安裝(spark-1.6.1-bin-hadoop2.6.tgz + hadoop-2.6.0.tar.gz)(master、slave1和slave2)(博主推薦)


 

 

 

說白了

  Spark on YARN模式的安裝,它是非常的簡單,只需要下載編譯好Spark安裝包,在一台帶有Hadoop YARN客戶端的的機器上運行即可。

 Spark on YARN簡介與運行wordcount(master、slave1和slave2)(博主推薦)

 

   Spark on YARN分為兩種: YARN cluster(YARN standalone,0.9版本以前)和 YARN client。

     如果需要返回數據到client就用YARN client模式。

   如果數據存儲到hdfs就用YARN cluster模式。(我一般是用這個)

 

 

 

 

開篇要明白

  (1)spark-env.sh 是環境變量配置文件

  (2)spark-defaults.conf

  (3)slaves 是從節點機器配置文件

  (4)metrics.properties 是 監控

  (5)log4j.properties 是配置日志

  (5)fairscheduler.xml是公平調度

  (6)docker.properties 是 docker

  (7)我這里的Spark on YARN模式的安裝,是master、slave1和slave2。

  (8)Spark on YARN模式的安裝,其實,是必須要安裝hadoop的。

  (9)為了管理,安裝zookeeper,(即管理master、slave1和slave2)

 

 

 

 

 

首先,說下我這篇博客的Spark on YARN模式的安裝情況

 

 

 

 

 

 

 

我的安裝分區如下,3台都一樣。

 

 

 

 

 

 

 

關於如何關閉防火牆

  我這里不多說,請移步

hadoop 50070 無法訪問問題解決匯總

 

 

 

 

 

 

關於如何配置靜態ip和聯網

  我這里不多說,我的是如下,請移步

CentOS 6.5靜態IP的設置(NAT和橋接聯網方式都適用)

 

復制代碼
DEVICE=eth0
HWADDR=00:0C:29:A9:45:18
TYPE=Ethernet
UUID=50fc177a-f282-4c83-bfbc-cb0f00b92507
ONBOOT=yes
NM_CONTROLLED=yes
BOOTPROTO=static

DEFROUTE=yes
PEERDNS=yes
PEERROUTES=yes
IPV4_FAILURE_FATAL=yes
IPV6INIT=no
NAME="System eth0"

IPADDR=192.168.80.10
BCAST=192.168.80.255
GATEWAY=192.168.80.2
NETMASK=255.255.255.0

DNS1=192.168.80.2
DNS2=8.8.8.8
復制代碼

 

 

復制代碼
DEVICE=eth0
HWADDR=00:0C:29:18:ED:4A
TYPE=Ethernet
UUID=b5d059e4-3b92-41ef-889b-68f2f5684fac
ONBOOT=yes
NM_CONTROLLED=yes
BOOTPROTO=static

DEFROUTE=yes
PEERDNS=yes
PEERROUTES=yes
IPV4_FAILURE_FATAL=yes
IPV6INIT=no
NAME="System eth0"
IPADDR=192.168.80.11
BCAST=192.168.80.255
GATEWAY=192.168.80.2
NETMASK=255.255.255.0

DNS1=192.168.80.2
DNS2=8.8.8.8
復制代碼

 

 

 

 

復制代碼
DEVICE=eth0
HWADDR=00:0C:29:8B:DE:B0
TYPE=Ethernet
UUID=1ba7be29-2c80-4875-8c11-1ed2a47c0a67
ONBOOT=yes
NM_CONTROLLED=yes
BOOTPROTO=static

DEFROUTE=yes
PEERDNS=yes
PEERROUTES=yes
IPV4_FAILURE_FATAL=yes
IPV6INIT=no
NAME="System eth0"
IPADDR=192.168.80.12
BCAST=192.168.80.255
GATEWAY=192.168.80.2
NETMASK=255.255.255.0

DNS1=192.168.80.2
DNS1=8.8.8.8
復制代碼

 

 

 

 

 

 

 

 

 

 

 

關於新建用戶組和用戶

  我這里不多說,我是spark,請移步

新建用戶組、用戶、用戶密碼、刪除用戶組、用戶(適合CentOS、Ubuntu)

 

 

 

 

關於安裝ssh、機器本身、機器之間進行免密碼通信和時間同步

  我這里不多說,具體,請移步。在這一步,本人深有感受,有經驗。最好建議拍快照。否則很容易出錯!

  機器本身,即master與master、slave1與slave1、slave2與slave2。

  機器之間,即master與slave1、master與slave2。

        slave1與slave2。

hadoop-2.6.0.tar.gz + spark-1.5.2-bin-hadoop2.6.tgz 的集群搭建(3節點和5節點皆適用)

hadoop-2.6.0.tar.gz的集群搭建(5節點)

 

 

 

 

 

 

 

 

 關於如何先卸載自帶的openjdk,再安裝

  我這里不多說,我是jdk-8u60-linux-x64.tar.gz,請移步

  我的jdk是安裝在/usr/local/jdk下,記得賦予權限組,chown -R spark:spark jdk

Centos 6.5下的OPENJDK卸載和SUN的JDK安裝、環境變量配置

 

#java
export JAVA_HOME=/usr/local/jdk/jdk1.8.0_60
export JRE_HOME=$JAVA_HOME/jre
export CLASSPATH=.:$JAVA_HOME/lib:$JRE_HOME/lib
export PATH=$PATH:$JAVA_HOME/bin

 

 

 

 關於如何安裝scala

  不多說,我這里是scala-2.10.5.tgz,請移步

  我的scala安裝在/usr/local/scala,記得賦予用戶組,chown -R spark:spark scala

 

hadoop-2.6.0.tar.gz + spark-1.6.1-bin-hadoop2.6.tgz的集群搭建(單節點)(CentOS系統)

#scala
export SCALA_HOME=/usr/local/scala/scala-2.10.5
export PATH=$PATH:$SCALA_HOME/bin

 

 

 

 關於如何安裝hadoop

  我這里不多說,請移步見

  我的spark安裝目錄是在/usr/local/hadoop/,記得賦予用戶組,chown -R spark:spark hadoop

    去看如何安裝就好,至於hadoop的怎么配置。請見下面的hadoop on yarn模式的配置文件講解。

#hadoop
export HADOOP_HOME=/usr/local/hadoop/hadoop-2.6.0
export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin

 

 

 

 

 

 

 

 關於如何安裝spark

  我這里不多說,請移步見

  我的spark安裝目錄是在/usr/local/spark/,記得賦予用戶組,chown -R spark:spark spark

    只需去下面的博客,去看如何安裝就好,至於spark的怎么配置。請見下面的spark  standalone模式的配置文件講解。

hadoop-2.6.0.tar.gz + spark-1.6.1-bin-hadoop2.6.tgz的集群搭建(單節點)(CentOS系統)

#spark
export SPARK_HOME=/usr/local/spark/spark-1.6.1-bin-hadoop2.6
export PATH=$PATH:$SPARK_HOME/bin:$SPARK_HOME/sbin

 

 

 

 

 

 

關於zookeeper的安裝

  我這里不多說,請移步

hadoop-2.6.0-cdh5.4.5.tar.gz(CDH)的3節點集群搭建(含zookeeper集群安裝)

 以及,之后,在spark 里怎么配置zookeeper。

 

 

 

這里,我帶大家來看官網

http://spark.apache.org/docs/latest

 

 

 

 

http://spark.apache.org/docs/latest/running-on-yarn.html

 

 

  

這里,不多說,很簡單,自行去看官網。多看官網!

 

 

 

 

 

Hadoop on YARN配置與部署

   這里,不多說,請移步

hadoop-2.6.0.tar.gz的集群搭建(3節點)(不含zookeeper集群安裝)

hadoop-2.6.0-cdh5.4.5.tar.gz(CDH)的3節點集群搭建(含zookeeper集群安裝)

hadoop-2.6.0.tar.gz + spark-1.5.2-bin-hadoop2.6.tgz 的集群搭建(3節點和5節點皆適用)

  我這里,只貼出我最后的配置文件和啟動界面

      注意:3台都是一樣的配置,master、slave1和slave2,我這里不多贅述。

 

hadoop-env.sh

export JAVA_HOME=/usr/local/jdk/jdk1.8.0_60

 

 

 core-site.xml

<configuration>
        <property>
                <name>fs.defaultFS</name>
                <value>hdfs://master:9000</value>
        </property>
        <property>
               <name>io.file.buffer.size</name>
               <value>131072</value>
        </property>
        <property>
               <name>hadoop.tmp.dir</name>
               <value>/usr/local/hadoop/hadoop-2.6.0/tmp</value>
        </property>
        <property>
              <name>hadoop.proxyuser.hadoop.hosts</name>
                <value>*</value>
        </property>
        <property>
              <name>hadoop.proxyuser.hadoop.groups</name>
               <value>*</value>
        </property>
</configuration>

 

 

 

hdfs-site.xml

<configuration>
        <property>
                <name>dfs.namenode.secondary.http-address</name>
              <value>master:9001</value>
        </property>
        <property>
              <name>dfs.replication</name>
              <value>2</value>
        </property>
        <property>
              <name>dfs.namenode.name.dir</name>
               <value>/usr/local/hadoop/hadoop-2.6.0/dfs/name</value>
        </property>
        <property>
              <name>dfs.datanode.data.dir</name>
              <value>/usr/local/hadoop/hadoop-2.6.0/dfs/data</value>
        </property>
        <property>
              <name>dfs.webhdfs.enabled</name>
              <value>true</value>
        </property>
</configuration>

 

 

 

mapred-site.xml

<configuration>
        <property>
                <name>mapreduce.framework.name</name>
              <value>yarn</value>
        </property>
        <property>
              <name>mapreduce.jobhistory.address</name>
              <value>master:10020</value>
        </property>
        <property>
              <name>mapreduce.jobhistory.webapp.address</name>
              <value>master:19888</value>
        </property>
</configuration>

 

 

 

 yarn-site.xml

<configuration>

    <property>
          <name>yarn.resourcemanager.hostname</name>
            <value>master</value>
    </property>
    <property>
        <name>yarn.nodemanager.aux-services</name>
        <value>mapreduce_shuffle</value>
    </property>
    <property>
        <name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
        <value>org.apache.hadoop.mapred.ShuffleHandler</value>
    </property>
    <property>
         <name>yarn.resourcemanager.address</name>
          <value>master:8032</value>
    </property>
    <property>
          <name>yarn.resourcemanager.scheduler.address</name>
          <value>master:8030</value>
    </property>
    <property>
          <name>yarn.resourcemanager.resource-tracker.address</name>
          <value>master:8031</value>
    </property>
    <property>
          <name>yarn.resourcemanager.admin.address</name>
          <value>master:8033</value>
    </property>
    <property>
          <name>yarn.resourcemanager.webapp.address</name>
          <value>master:8088</value>
    </property>
</configuration>

 

slaves

slave1
slave2

 

masters

master

 

 

 

  然后,新建目錄

mkdir -p /usr/local/hadoop/hadoop-2.6.0/dfs/name
mkdir -p /usr/local/hadoop/hadoop-2.6.0/dfs/data
mkdir -p /usr/local/hadoop/hadoop-2.6.0/tmp

 

 

  在master節點上,格式化

$HADOOP_HOME/bin/hadoop namenode -format

 

  啟動hadoop進程

$HADOOP_HOME/sbin/start-all.sh

 

 

  輸入

http://master:50070

http://master:8088

 

 

 

 

  

 

 

 

 

Spark on YARN配置與部署(這里,作為補充)

編譯時包含YARN

mvn -Pyarn -Phadoop-2.6 -Dhadoop.version=2.7.1 -Phive -Phive-thriftserver -Psparkr -DskipTests clean package

/make-distribution.sh --name hadoop2.7.1 --tgz -Psparkr -Phadoop-2.6 -Dhadoop.version=2.7.1 -Phive -Phive-thriftserver –Pyarn

 

注意:

  hadoop的版本跟你使用的hadoop要對應,建議使用CDH或者HDP的hadoop發行版,對應關系已經處理好了

export MAVEN_OPTS="-Xmx2g -XX:MaxPermSize=512M -XX:ReservedCodeCacheSize=512m"

 

 

 

 

 

 

 

 

 

Spark on YARN的配置(這里,本博文的重點)

  Spark On YARN安裝非常簡單,只需要下載編譯好的Spark安裝包,在一台帶有Hadoop Yarn客戶端的機器上解壓即可。

   Spark on YARN分為兩種: YARN cluster(YARN standalone,0.9版本以前)和 YARN client。

YARN cluster是...我是用這種。

YARN client是將Client和Driver運行在一起(運行在本地),AM只用來管理資源。

  如果需要返回數據到client就用YARN client模式。

  如果數據存儲到hdfs就用YARN cluster模式。

 

 注意:3台都是一樣的配置,master、slave1和slave2,我這里不多贅述。

  

 

 

 

Spark on YARN基本配置

  配置HADOOP_CONF_DIR或者YARN_CONF_DIR環境變量。讓Spark知道YARN的配置信息。

  這句話是從哪里來的,其實,你若沒有在spark-env.sh配置任何東西的話,直接去執行$SPARK_HOME/bin/spark-shell  --master yarn就可以看到,它提示你去做。

 

 

 

 

 

  有三種方式

     (1)配置在spark-env.sh中 (我一般是用這種)(本博文也是這種)

     (2)在提交spark應用之前export

      (3) 配在到操作系統的環境變量中

   注意:在yarn-site.xml,配上hostname

 

 

   如果使用的是HDP,請在spark-defaults.conf中加入:(這里,作為補充)

  spark.driver.extraJavaOptions -Dhdp.version=current

  spark.yarn.am.extraJavaOptions -Dhdp.version=current

 

 

 

 

修改如下配置:

● slaves--指定在哪些節點上運行worker。

#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

# A Spark Worker will be started on each of the machines listed below.
slave1
slave2

 

 

 

 

spark-defaults.conf---spark提交job時的默認配置

復制代碼
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Default system properties included when running spark-submit. # This is useful for setting default environmental settings. # Example: # spark.master spark://master:7077 # spark.eventLog.enabled true # spark.eventLog.dir hdfs://namenode:8021/directory # spark.serializer org.apache.spark.serializer.KryoSerializer # spark.driver.memory 5g # spark.executor.extraJavaOptions -XX:+PrintGCDetails -Dkey=value -Dnumbers="one two three"
復制代碼

  大家,可以在這個配置文件里指定好,以后每次不需在命令行下指定了。當然咯,也可以不配置啦!(我一般是這里不配置,即這個文件不動它

 

 

 

spark-defaults.conf (這個作為可選可不選)(是因為或者是在spark-submit里也是可以加入的)(一般不選,不然固定死了)(我一般是這里不配置,即這個文件不動它

spark.master                       spark://master:7077 spark.eventLog.enabled true spark.eventLog.dir hdfs://master:9000/sparkHistoryLogs spark.eventLog.compress true spark.history.fs.update.interval 5 spark.history.ui.port 7777 spark.history.fs.logDirectory hdfs://master:9000/sparkHistoryLogs

  

 

 

 

 

 

spark-env.sh—spark的環境變量

#!/usr/bin/env bash

#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

# This file is sourced when running various Spark programs.
# Copy it as spark-env.sh and edit that to configure Spark for your site.

# Options read when launching programs locally with
# ./bin/run-example or ./bin/spark-submit
# - HADOOP_CONF_DIR, to point Spark towards Hadoop configuration files
# - SPARK_LOCAL_IP, to set the IP address Spark binds to on this node
# - SPARK_PUBLIC_DNS, to set the public dns name of the driver program
# - SPARK_CLASSPATH, default classpath entries to append

# Options read by executors and drivers running inside the cluster
# - SPARK_LOCAL_IP, to set the IP address Spark binds to on this node
# - SPARK_PUBLIC_DNS, to set the public DNS name of the driver program
# - SPARK_CLASSPATH, default classpath entries to append
# - SPARK_LOCAL_DIRS, storage directories to use on this node for shuffle and RDD data
# - MESOS_NATIVE_JAVA_LIBRARY, to point to your libmesos.so if you use Mesos

# Options read in YARN client mode
# - HADOOP_CONF_DIR, to point Spark towards Hadoop configuration files
# - SPARK_EXECUTOR_INSTANCES, Number of executors to start (Default: 2)
# - SPARK_EXECUTOR_CORES, Number of cores for the executors (Default: 1).
# - SPARK_EXECUTOR_MEMORY, Memory per Executor (e.g. 1000M, 2G) (Default: 1G)
# - SPARK_DRIVER_MEMORY, Memory for Driver (e.g. 1000M, 2G) (Default: 1G)
# - SPARK_YARN_APP_NAME, The name of your application (Default: Spark)
# - SPARK_YARN_QUEUE, The hadoop queue to use for allocation requests (Default: ‘default’)
# - SPARK_YARN_DIST_FILES, Comma separated list of files to be distributed with the job.
# - SPARK_YARN_DIST_ARCHIVES, Comma separated list of archives to be distributed with the job.

# Options for the daemons used in the standalone deploy mode
# - SPARK_MASTER_IP, to bind the master to a different IP address or hostname
# - SPARK_MASTER_PORT / SPARK_MASTER_WEBUI_PORT, to use non-default ports for the master


# - SPARK_MASTER_OPTS, to set config properties only for the master (e.g. "-Dx=y")
# - SPARK_WORKER_CORES, to set the number of cores to use on this machine
# - SPARK_WORKER_MEMORY, to set how much total memory workers have to give executors (e.g. 1000m, 2g)
# - SPARK_WORKER_PORT / SPARK_WORKER_WEBUI_PORT, to use non-default ports for the worker
# - SPARK_WORKER_INSTANCES, to set the number of worker processes per node
# - SPARK_WORKER_DIR, to set the working directory of worker processes
# - SPARK_WORKER_OPTS, to set config properties only for the worker (e.g. "-Dx=y")
# - SPARK_DAEMON_MEMORY, to allocate to the master, worker and history server themselves (default: 1g).
# - SPARK_HISTORY_OPTS, to set config properties only for the history server (e.g. "-Dx=y")
# - SPARK_SHUFFLE_OPTS, to set config properties only for the external shuffle service (e.g. "-Dx=y")
# - SPARK_DAEMON_JAVA_OPTS, to set config properties for all daemons (e.g. "-Dx=y")
# - SPARK_PUBLIC_DNS, to set the public dns name of the master or workers

# Generic options for the daemons used in the standalone deploy mode
# - SPARK_CONF_DIR      Alternate conf dir. (Default: ${SPARK_HOME}/conf)
# - SPARK_LOG_DIR       Where log files are stored.  (Default: ${SPARK_HOME}/logs)
# - SPARK_PID_DIR       Where the pid file is stored. (Default: /tmp)
# - SPARK_IDENT_STRING  A string representing this instance of spark. (Default: $USER)
# - SPARK_NICENESS      The scheduling priority for daemons. (Default: 0)


export JAVA_HOME=/usr/local/jdk/jdk1.8.0_60 (必須寫)
export SCALA_HOME=/usr/local/scala/scala-2.10.5 (必須寫)
export HADOOP_HOME=/usr/local/hadoop/hadoop-2.6.0 (必須寫)
export HADOOP_CONF_DIR=/usr/local/hadoop/hadoop-2.6.0/etc/
hadoop (必須寫)
export SPARK_MASTER_IP=192.168.80.10  
export SPARK_WORKER_MERMORY=1G (官網上說,至少1g)

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

spark-shell運行在YARN上(這是Spark on YARN模式)

     (包含YARN client和YARN cluster)(作為補充)

 登陸安裝Spark那台機器

bin/spark-shell --master yarn-client

 或者

bin/spark-shell --master yarn-cluster

   包括可以加上其他的,比如控制內存啊等。這很簡單,不多贅述。

 

 

  我這里就以YARN Client演示了。

[spark@master spark-1.6.1-bin-hadoop2.6]$ bin/spark-shell --master yarn-client
17/03/29 22:40:04 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
17/03/29 22:40:04 INFO spark.SecurityManager: Changing view acls to: spark
17/03/29 22:40:04 INFO spark.SecurityManager: Changing modify acls to: spark
17/03/29 22:40:04 INFO spark.SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(spark); users with modify permissions: Set(spark)
17/03/29 22:40:05 INFO spark.HttpServer: Starting HTTP Server
17/03/29 22:40:06 INFO server.Server: jetty-8.y.z-SNAPSHOT
17/03/29 22:40:06 INFO server.AbstractConnector: Started SocketConnector@0.0.0.0:35692
17/03/29 22:40:06 INFO util.Utils: Successfully started service 'HTTP class server' on port 35692.
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /___/ .__/\_,_/_/ /_/\_\   version 1.6.1
      /_/

Using Scala version 2.10.5 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_60)

   注意,這里的--master是固定參數,不是說主機名是master。

Spark Shell啟動時遇到<console>:14: error: not found: value spark import spark.implicits._ <console>:14: error: not found: value spark import spark.sql錯誤的解決辦法(圖文詳解)

 

 

 

 

 

提交spark作業

  為了出現問題,還是先看我寫的這篇博客吧!

spark跑YARN模式或Client模式提交任務不成功(application state: ACCEPTED)

 

1、用yarn-client模式提交spark作業

在/usr/local/spark目錄下創建文件夾

vi spark_pi.sh
$SPARK_HOME/bin/spark-submit \
--class org.apache.spark.examples.JavaSparkPi \
--master yarn-client \
--num-executors 1 \
--driver-memory 1g \
--executor-memory 1g \
--executor-cores 1 \
$SPARK_HOME/lib/spark-examples-1.6.1-hadoop2.6.0.jar \


driver-memory不指定也可以,默認使用512M
executor-memory不指定的化, 默認是1G

 

chmod 777 spark_pi.sh
./spark_pi.sh

 

 

或者

[spark@master ~]$  $SPARK_HOME/bin/spark-submit  \
> --class org.apache.spark.examples.JavaSparkPi \
> --master yarn-cluster \
> --num-executors 1 \
> --driver-memory 1g \
> --executor-memory 1g \
> --executor-cores 1 \
>  $SPARK_HOME/lib/spark-examples-1.6.1-hadoop2.6.0.jar


driver-memory不指定也可以,默認使用512M
executor-memory不指定的化, 默認是1G

 

 

 

 

2、用yarn-cluster模式提交spark作業

 

在/usr/local/spark目錄下創建文件夾

 

vi spark_pi.sh
$SPARK_HOME/bin/spark-submit \
--class org.apache.spark.examples.JavaSparkPi \
--master yarn-cluster \
--num-executors 1 \
--driver-memory 1g \
--executor-memory 1g \
--executor-cores 1 \
$SPARK_HOME/lib/spark-examples-1.6.1-hadoop2.6.0.jar \


driver-memory不指定也可以,默認使用512M
executor-memory不指定的化, 默認是1G

 

 

 chmod 777 spark_pi.sh
./spark_pi.sh

 

 

 

 或者

[spark@master ~]$  $SPARK_HOME/bin/spark-submit  \
> --class org.apache.spark.examples.JavaSparkPi \
> --master yarn-cluster \
> --num-executors 1 \
> --driver-memory 1g \
> --executor-memory 1g \
> --executor-cores 1 \
>  $SPARK_HOME/lib/spark-examples-1.6.1-hadoop2.6.0.jar


driver-memory不指定也可以,默認使用512M
executor-memory不指定的化, 默認是1G

 

   注意,這里的--master是固定參數

   

 
 
 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM