An Introduction to Statistical Learning with Applications in R (ISL) - Introduction


 

是自己最近學習 "An Introduction to Statistical Learning with Applications in R" 的一個筆記整理。

http://www-bcf.usc.edu/~gareth/ISL/

本書的作者是Gareth JamesDaniela WittenTrevor Hastie and Robert Tibshirani,發表於February 11, 2013。

此書對統計入門,尤其是監督學習的各種方法,進行了系統性的介紹。更棒的是,每章最后的lab部分,結合了R語言應用實際問題,課后習題中也有專門的R語言練習。

習題的非官方答案可參考 http://blog.princehonest.com/stat-learning/

下面就開始啦~

 

Contents

  1. Introduction
  2. Statistical Learning: basic terminology, the K-nearest neighbor classifier
  3. Linear Regression
  4. Classification:logistic regression and linear discriminant analysis (LDA)
  5. Resampling Methods: cross-validation and the bootstrap
  6. Linear Model Selection and Regularization: stepwise selection, ridge regression, principal components regression, partial least squares, and the lasso.
  7. Moving Beyond Linearity: non-linear additive models 
  8. Tree-Based Methods: bagging, boosting, and random forests
  9. Support Vector Machines
  10. Unsupervised Learning: principal components analysis (PCA), K-means clustering, and hierarchical clustering

 

A Brief History of Statistical Learning

  • 1800's, method of least squares, linear regression
  • 1936, Fisher's linear discriminant analysis (LDA)
  • 1940, logistic regression
  • 1970's, generalized linear models
  • 1980's, classification and regression trees
  • 1986, generalized additive models
  • today, machine learning

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM