An Introduction to Statistical Learning with Applications in R (ISL) - Introduction


 

是自己最近学习 "An Introduction to Statistical Learning with Applications in R" 的一个笔记整理。

http://www-bcf.usc.edu/~gareth/ISL/

本书的作者是Gareth JamesDaniela WittenTrevor Hastie and Robert Tibshirani,发表于February 11, 2013。

此书对统计入门,尤其是监督学习的各种方法,进行了系统性的介绍。更棒的是,每章最后的lab部分,结合了R语言应用实际问题,课后习题中也有专门的R语言练习。

习题的非官方答案可参考 http://blog.princehonest.com/stat-learning/

下面就开始啦~

 

Contents

  1. Introduction
  2. Statistical Learning: basic terminology, the K-nearest neighbor classifier
  3. Linear Regression
  4. Classification:logistic regression and linear discriminant analysis (LDA)
  5. Resampling Methods: cross-validation and the bootstrap
  6. Linear Model Selection and Regularization: stepwise selection, ridge regression, principal components regression, partial least squares, and the lasso.
  7. Moving Beyond Linearity: non-linear additive models 
  8. Tree-Based Methods: bagging, boosting, and random forests
  9. Support Vector Machines
  10. Unsupervised Learning: principal components analysis (PCA), K-means clustering, and hierarchical clustering

 

A Brief History of Statistical Learning

  • 1800's, method of least squares, linear regression
  • 1936, Fisher's linear discriminant analysis (LDA)
  • 1940, logistic regression
  • 1970's, generalized linear models
  • 1980's, classification and regression trees
  • 1986, generalized additive models
  • today, machine learning

 


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM