cnn進行端到端的驗證碼識別改進


keras_cnn.py 訓練及建模

#!/usr/bin/env python
# coding=utf-8

"""
利用keras cnn進行端到端的驗證碼識別, 簡單直接暴力。
迭代100次可以達到95%的准確率,但是很容易過擬合,泛化能力糟糕, 除了增加訓練數據還沒想到更好的方法.

__autho__: jkmiao
__email__: miao1202@126.com
___date__:2017-02-08

"""
from keras.models import Model
from keras.layers import Dense, Dropout, Flatten, Input, merge
from keras.layers import Convolution2D, MaxPooling2D
from keras.preprocessing.image import ImageDataGenerator
from PIL import Image
import os, random
import numpy as np
from keras.models import model_from_json
from util import CharacterTable
from keras.callbacks import EarlyStopping
from sklearn.model_selection import train_test_split
# from keras.utils.visualize_util import plot

def load_data(path='img/clearNoise/'):
    fnames = [os.path.join(path, fname) for fname in os.listdir(path) if fname.endswith('jpg')]
    random.shuffle(fnames)
    data, label = [], []
    for i, fname in enumerate(fnames):
        imgLabel = fname.split('/')[-1].split('_')[0]
        if len(imgLabel)!=6:
            print 'error: ', fname
            continue
        imgM = np.array(Image.open(fname).convert('L'))
        imgM = 1 * (imgM>180)
        data.append(imgM.reshape((60, 200, 1)))
        label.append(imgLabel.lower())
    return np.array(data), label

ctable = CharacterTable()
data, label = load_data()
print data[0].max(), data[0].min()
label_onehot = np.zeros((len(label), 216))
for i, lb in enumerate(label):
    label_onehot[i,:] = ctable.encode(lb)
print data.shape, data[-1].max(), data[-1].min()
print label_onehot.shape


datagen = ImageDataGenerator(shear_range=0.08, zoom_range=0.08, horizontal_flip=False,
                            rotation_range=5, width_shift_range=0.06, height_shift_range=0.06)

datagen.fit(data)

x_train, x_test, y_train, y_test = train_test_split(data, label_onehot, test_size=0.1)

DEBUG = False

# 建模
if DEBUG:
    input_img = Input(shape=(60, 200, 1))

    inner = Convolution2D(16, 7, 7, border_mode='same', activation='relu')(input_img)
    inner = MaxPooling2D(pool_size=(2,2))(inner)
    inner = Convolution2D(16, 3, 3, border_mode='same')(inner)
    inner = Convolution2D(16, 3, 3, border_mode='same')(inner)
    inner = MaxPooling2D(pool_size=(2,2))(inner)
    inner = Convolution2D(16, 3, 3, border_mode='same')(inner)
    encoder_a = Flatten()(inner)

    inner = Convolution2D(16, 5, 5, border_mode='same', activation='relu')(input_img)
    inner = MaxPooling2D(pool_size=(2,2))(inner)
    inner = Convolution2D(16, 3, 3, border_mode='same')(inner)
    inner = Convolution2D(16, 3, 3, border_mode='same')(inner)
    inner = MaxPooling2D(pool_size=(2,2))(inner)
    inner = Convolution2D(16, 3, 3, border_mode='same')(inner)
    encoder_b = Flatten()(inner)
    
    inner = Convolution2D(16, 3, 3, border_mode='same', activation='relu')(input_img)
    inner = MaxPooling2D(pool_size=(2,2))(inner)
    inner = Convolution2D(16, 3, 3, border_mode='same')(inner)
    inner = Convolution2D(16, 3, 3, border_mode='same')(inner)
    inner = MaxPooling2D(pool_size=(2,2))(inner)
    inner = Convolution2D(16, 3, 3, border_mode='same')(inner)
    encoder_c = Flatten()(inner)
    
    input = merge([encoder_a, encoder_b, encoder_c], mode='concat', concat_axis=-1)
    drop = Dropout(0.5)(input)
    flatten = Dense(216)(drop)
    flatten = Dropout(0.5)(flatten)
    
    fc1 = Dense(36, activation='softmax')(flatten) 
    fc2 = Dense(36, activation='softmax')(flatten) 
    fc3 = Dense(36, activation='softmax')(flatten) 
    fc4 = Dense(36, activation='softmax')(flatten) 
    fc5 = Dense(36, activation='softmax')(flatten) 
    fc6 = Dense(36, activation='softmax')(flatten) 
    merged = merge([fc1, fc2, fc3, fc4, fc5, fc6], mode='concat', concat_axis=-1)

    model = Model(input=input_img, output=merged)
else:
    model = model_from_json(open('model/ba_cnn_model3.json').read())
    model.load_weights('model/ba_cnn_model3.h5')

# 編譯
# model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])
model.summary()
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

# plot(model, to_file='model3.png', show_shapes=True)

# 訓練

early_stopping = EarlyStopping(monitor='val_loss', patience=5)

model.fit_generator(datagen.flow(x_train, y_train, batch_size=32), samples_per_epoch=len(x_train), nb_epoch=50, validation_data=(x_test, y_test), callbacks=[early_stopping] )

json_string = model.to_json()
with open('./model/ba_cnn_model4.json', 'w') as fw:
    fw.write(json_string)
model.save_weights('./model/ba_cnn_model4.h5')

print 'done saved model cnn3'

# 測試
y_pred = model.predict(x_test, verbose=1)
cnt = 0
for i in range(len(y_pred)):
    guess = ctable.decode(y_pred[i])
    correct = ctable.decode(y_test[i])
    if guess == correct:
        cnt += 1
    if i%10==0:
        print '--'*10, i
        print 'y_pred', guess
        print 'y_test', correct
print cnt/float(len(y_pred))

 

apicode.py  模型使用

#!/usr/bin/env python
# coding=utf-8

from util import CharacterTable
from keras.models import model_from_json
from PIL import Image
import matplotlib.pyplot as plt
import os
import numpy as np
from prepare import clearNoise

def img2vec(fname):
    data = []
    img = clearNoise(fname).convert('L')
    imgM = 1.0 * (np.array(img)>180)
    print imgM.max(), imgM.min()
    data.append(imgM.reshape((60, 200, 1)))
    return np.array(data), imgM

ctable = CharacterTable()

model = model_from_json(open('model/ba_cnn_model4.json').read())
model.load_weights('model/ba_cnn_model4.h5')

def test(path):
    fnames = [ os.path.join(path, fname) for fname in os.listdir(path) ][:50]
    correct = 0
    for idx, fname in enumerate(fnames, 1):
        data, imgM = img2vec(fname)
        y_pred = model.predict(data)
        result = ctable.decode(y_pred[0])
        label = fname.split('/')[-1].split('_')[0]
        if result == label:
            correct += 1
            print 'correct', fname
        else:
            print result, label
        print 'accuracy: ',idx, float(correct)/idx
        print '=='*20
#        plt.subplot(121)
#        plt.imshow(Image.open(fname).convert('L'), plt.cm.gray)
#        plt.title(fname)
#
#        plt.subplot(122)
#        plt.imshow(imgM, plt.cm.gray)
#        plt.title(result)
#        plt.show()

test('test')

 


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM