PCL點雲特征描述與提取(4)


如何從一個深度圖像(range image)中提取NARF特征

代碼解析narf_feature_extraction.cpp

#include <iostream>

#include <boost/thread/thread.hpp>
#include <pcl/range_image/range_image.h>
#include <pcl/io/pcd_io.h>
#include <pcl/visualization/range_image_visualizer.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/features/range_image_border_extractor.h>
#include <pcl/keypoints/narf_keypoint.h>
#include <pcl/features/narf_descriptor.h>
#include <pcl/console/parse.h>

typedef pcl::PointXYZ PointType;

//參數的設置
float angular_resolution = 0.5f;
float support_size = 0.2f;
pcl::RangeImage::CoordinateFrame coordinate_frame = pcl::RangeImage::CAMERA_FRAME;
bool setUnseenToMaxRange = false;
bool rotation_invariant = true;

//命令幫助
void 
printUsage (const char* progName)
{
  std::cout << "\n\nUsage: "<<progName<<" [options] <scene.pcd>\n\n"
            << "Options:\n"
            << "-------------------------------------------\n"
            << "-r <float>   angular resolution in degrees (default "<<angular_resolution<<")\n"
            << "-c <int>     coordinate frame (default "<< (int)coordinate_frame<<")\n"
            << "-m           Treat all unseen points to max range\n"
            << "-s <float>   support size for the interest points (diameter of the used sphere - "
                                                                  "default "<<support_size<<")\n"
            << "-o <0/1>     switch rotational invariant version of the feature on/off"
            <<               " (default "<< (int)rotation_invariant<<")\n"
            << "-h           this help\n"
            << "\n\n";
}

void 
setViewerPose (pcl::visualization::PCLVisualizer& viewer, const Eigen::Affine3f& viewer_pose)//setViewerPose
{
  Eigen::Vector3f pos_vector = viewer_pose * Eigen::Vector3f (0, 0, 0);
  Eigen::Vector3f look_at_vector = viewer_pose.rotation () * Eigen::Vector3f (0, 0, 1) + pos_vector;
  Eigen::Vector3f up_vector = viewer_pose.rotation () * Eigen::Vector3f (0, -1, 0);
  viewer.setCameraPosition (pos_vector[0], pos_vector[1], pos_vector[2],
                            look_at_vector[0], look_at_vector[1], look_at_vector[2],
                            up_vector[0], up_vector[1], up_vector[2]);
}

int 
main (int argc, char** argv)
{
 // 設置參數檢測
  if (pcl::console::find_argument (argc, argv, "-h") >= 0)
  {
    printUsage (argv[0]);
    return 0;
  }
  if (pcl::console::find_argument (argc, argv, "-m") >= 0)
  {
    setUnseenToMaxRange = true;
    cout << "Setting unseen values in range image to maximum range readings.\n";
  }
  if (pcl::console::parse (argc, argv, "-o", rotation_invariant) >= 0)
    cout << "Switching rotation invariant feature version "<< (rotation_invariant ? "on" : "off")<<".\n";
  int tmp_coordinate_frame;
  if (pcl::console::parse (argc, argv, "-c", tmp_coordinate_frame) >= 0)
  {
    coordinate_frame = pcl::RangeImage::CoordinateFrame (tmp_coordinate_frame);
    cout << "Using coordinate frame "<< (int)coordinate_frame<<".\n";
  }
  if (pcl::console::parse (argc, argv, "-s", support_size) >= 0)
    cout << "Setting support size to "<<support_size<<".\n";
  if (pcl::console::parse (argc, argv, "-r", angular_resolution) >= 0)
    cout << "Setting angular resolution to "<<angular_resolution<<"deg.\n";
  angular_resolution = pcl::deg2rad (angular_resolution);
  
//打開一個磁盤中的.pcd文件  但是如果沒有指定就會自動生成
  pcl::PointCloud<PointType>::Ptr    point_cloud_ptr (new pcl::PointCloud<PointType>);
  pcl::PointCloud<PointType>& point_cloud = *point_cloud_ptr;

  pcl::PointCloud<pcl::PointWithViewpoint> far_ranges;
  Eigen::Affine3f scene_sensor_pose (Eigen::Affine3f::Identity ());
  std::vector<int> pcd_filename_indices = pcl::console::parse_file_extension_argument (argc, argv, "pcd");
  if (!pcd_filename_indices.empty ())   //檢測是否有far_ranges.pcd
  {
    std::string filename = argv[pcd_filename_indices[0]];
    if (pcl::io::loadPCDFile (filename, point_cloud) == -1)
    {
      cerr << "Was not able to open file \""<<filename<<"\".\n";
      printUsage (argv[0]);
      return 0;
    }
    scene_sensor_pose = Eigen::Affine3f (Eigen::Translation3f (point_cloud.sensor_origin_[0],
                                                               point_cloud.sensor_origin_[1],
                                                               point_cloud.sensor_origin_[2])) *
                        Eigen::Affine3f (point_cloud.sensor_orientation_);
    std::string far_ranges_filename = pcl::getFilenameWithoutExtension (filename)+"_far_ranges.pcd";
    if (pcl::io::loadPCDFile (far_ranges_filename.c_str (), far_ranges) == -1)
      std::cout << "Far ranges file \""<<far_ranges_filename<<"\" does not exists.\n";
  }
  else
  {
    setUnseenToMaxRange = true;
    cout << "\nNo *.pcd file given => Genarating example point cloud.\n\n";
    for (float x=-0.5f; x<=0.5f; x+=0.01f)   //如果沒有打開的文件就生成一個矩形的點雲
    {
      for (float y=-0.5f; y<=0.5f; y+=0.01f)
      {
        PointType point;  point.x = x;  point.y = y;  point.z = 2.0f - y;
        point_cloud.points.push_back (point);
      }
    }
    point_cloud.width = (int) point_cloud.points.size ();  point_cloud.height = 1;
  }
  
//從點雲中建立生成深度圖
  float noise_level = 0.0;    
  float min_range = 0.0f;
  int border_size = 1;
  boost::shared_ptr<pcl::RangeImage> range_image_ptr (new pcl::RangeImage);
  pcl::RangeImage& range_image = *range_image_ptr;   
  range_image.createFromPointCloud (point_cloud, angular_resolution, pcl::deg2rad (360.0f), pcl::deg2rad (180.0f),
                                   scene_sensor_pose, coordinate_frame, noise_level, min_range, border_size);
  range_image.integrateFarRanges (far_ranges);
  if (setUnseenToMaxRange)
    range_image.setUnseenToMaxRange ();
  
  //打開3D viewer並加入點雲
  pcl::visualization::PCLVisualizer viewer ("3D Viewer");
  viewer.setBackgroundColor (1, 1, 1);
  pcl::visualization::PointCloudColorHandlerCustom<pcl::PointWithRange> range_image_color_handler (range_image_ptr, 0, 0, 0);
  viewer.addPointCloud (range_image_ptr, range_image_color_handler, "range image");
  viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1, "range image");
  //viewer.addCoordinateSystem (1.0f, "global");
  //PointCloudColorHandlerCustom<PointType> point_cloud_color_handler (point_cloud_ptr, 150, 150, 150);
  //viewer.addPointCloud (point_cloud_ptr, point_cloud_color_handler, "original point cloud");
  viewer.initCameraParameters ();
  setViewerPose (viewer, range_image.getTransformationToWorldSystem ());
  //顯示
  pcl::visualization::RangeImageVisualizer range_image_widget ("Range image");
  range_image_widget.showRangeImage (range_image);
  
  //提取NARF特征
  pcl::RangeImageBorderExtractor range_image_border_extractor;    //申明深度圖邊緣提取器
  pcl::NarfKeypoint narf_keypoint_detector;                       //narf_keypoint_detector為點雲對象

  narf_keypoint_detector.setRangeImageBorderExtractor (&range_image_border_extractor);
  narf_keypoint_detector.setRangeImage (&range_image);
  narf_keypoint_detector.getParameters ().support_size = support_size;    //獲得特征提取的大小
  
  pcl::PointCloud<int> keypoint_indices;
  narf_keypoint_detector.compute (keypoint_indices);
  std::cout << "Found "<<keypoint_indices.points.size ()<<" key points.\n";

  // ----------------------------------------------
  // -----Show keypoints in range image widget-----
  // ----------------------------------------------
  //for (size_t i=0; i<keypoint_indices.points.size (); ++i)
    //range_image_widget.markPoint (keypoint_indices.points[i]%range_image.width,
                                  //keypoint_indices.points[i]/range_image.width);
  
  //在3Dviewer顯示提取的特征信息
  pcl::PointCloud<pcl::PointXYZ>::Ptr keypoints_ptr (new pcl::PointCloud<pcl::PointXYZ>);
  pcl::PointCloud<pcl::PointXYZ>& keypoints = *keypoints_ptr;
  keypoints.points.resize (keypoint_indices.points.size ());
  for (size_t i=0; i<keypoint_indices.points.size (); ++i)
    keypoints.points[i].getVector3fMap () = range_image.points[keypoint_indices.points[i]].getVector3fMap ();
  pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> keypoints_color_handler (keypoints_ptr, 0, 255, 0);
  viewer.addPointCloud<pcl::PointXYZ> (keypoints_ptr, keypoints_color_handler, "keypoints");
  viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 7, "keypoints");
  
  //在關鍵點提取NARF描述子
  std::vector<int> keypoint_indices2;
  keypoint_indices2.resize (keypoint_indices.points.size ());
  for (unsigned int i=0; i<keypoint_indices.size (); ++i) // This step is necessary to get the right vector type
    keypoint_indices2[i]=keypoint_indices.points[i];      ///建立NARF關鍵點的索引向量,此矢量作為NARF特征計算的輸入來使用

  pcl::NarfDescriptor narf_descriptor (&range_image, &keypoint_indices2);//創建narf_descriptor對象。並給了此對象輸入數據(特征點索引和深度像)
  narf_descriptor.getParameters ().support_size = support_size;//support_size確定計算描述子時考慮的區域大小
  narf_descriptor.getParameters ().rotation_invariant = rotation_invariant;    //設置旋轉不變的NARF描述子
  pcl::PointCloud<pcl::Narf36> narf_descriptors;               //創建Narf36的點類型輸入點雲對象並進行實際計算
  narf_descriptor.compute (narf_descriptors);                 //計算描述子
  cout << "Extracted "<<narf_descriptors.size ()<<" descriptors for "   //打印輸出特征點的數目和提取描述子的數目
                      <<keypoint_indices.points.size ()<< " keypoints.\n";
  
//主循環函數
  while (!viewer.wasStopped ())
  {
    range_image_widget.spinOnce ();  // process GUI events
    viewer.spinOnce ();
    pcl_sleep(0.01);
  }
}

編譯運行./narf_feature_extraction -m

這將自動生成一個呈矩形的點雲,檢測的特征點處在角落處,參數-m是必要的,因為矩形周圍的區域觀測不到,但是屬於邊界部分,因此系統無法檢測到這部分區域的特征點,選項-m將看不到的區域改變到最大范圍讀取,從而使系統能夠使用這些邊界區域。

(2)特征描述算子算法基准化分析

使用FeatureEvaluationFramework類對不同的特征描述子算法進行基准測試,基准測試框架可以測試不同種類的特征描述子算法,通過選擇輸入點雲,算法參數,下采樣葉子大小,搜索閥值等獨立變量來進行測試。

使用FeatureCorrespondenceTest類執行一個單一的“基於特征的對應估計測試”執行以下的操作

   1.FeatureCorrespondenceTest類取兩個輸入點雲(源與目標) 它將指定算法和參數,在每個點雲中計算特征描述子

  2.基於n_D特征空間中的最近鄰元素搜索,源點雲中的每個特征將和目標點雲中對應的特征相對照

  3 。對於每一個點,系統將把估計的目標點的三維位置和之前已知的實際位置相比

 4 。如果這兩個點很接近(取決與決定的閥值)那么對應就成功,否則失敗

 5 計算並保存成功和失敗的總數,以便進一步分析

 

 

微信公眾號號可掃描二維碼一起共同學習交流


免責聲明!

本站轉載的文章為個人學習借鑒使用,本站對版權不負任何法律責任。如果侵犯了您的隱私權益,請聯系本站郵箱yoyou2525@163.com刪除。



 
粵ICP備18138465號   © 2018-2026 CODEPRJ.COM