在項目中,需要畫波形頻譜圖,因此進行查找,不是很懂相關知識,下列代碼主要是針對這篇文章。
http://blog.csdn.net/xcgspring/article/details/4749075
//快速傅里葉變換 /* 入口參數: inv: =1,傅里葉變換; =-1,逆傅里葉變換 N:輸入的點數,為偶數,一般為2的冪次級,2,4,8,16... k: 滿足N=2^k(k>0),實質上k是N個采樣數據可以分解為偶次冪和奇次冪的次數 real[]: inv=1時,存放N個采樣數據的實部,inv=-1時,存放傅里葉變換的N個實部 imag[]: inv=1時,存放N個采樣數據的虛部,inv=-1時,存放傅里葉變換的N個虛部 出口參數: real[]: inv=1時,返回傅里葉變換的實部,inv=-1時,返回逆傅里葉變換的實部 imag[]: inv=1時,返回傅里葉變換的虛部,inv=-1時,返回逆傅里葉變換的虛部 */ void FFT::dealFFT(double real[], double imag[], double dSp[], int N, int k, int inv) { int i, j, k1, k2, m, step, factor_step; double temp_real, temp_imag, factor_real, factor_imag; if (inv != 1 && inv != -1) return; //double *real = new double[N]; //double *imag = new double[N]; //倒序 j = 0; for (i = 0; i < N; i++) { if (j>i) { temp_real = real[j]; real[j] = real[i]; real[i] = temp_real; temp_imag = imag[j]; imag[j] = imag[i]; imag[i] = temp_imag; } m = N / 2; while (j >= m&&m != 0) { j -= m; m >>= 1; } j += m; } //蝶形運算 for (i = 0; i < k; i++) { step = 1 << (i + 1); factor_step = N >> (i + 1); //旋轉因數變化速度 //初始化旋轉因子 factor_real = 1.0; factor_imag = 0.0; for (j = 0; j < step / 2; j++) { for (k1 = j; k1 < N; k1 += step) { k2 = k1 + step / 2; //蝶形運算的兩個輸入 /* temp_real = real[k1] + real[k2] * factor_real - imag[k2] * factor_imag; temp_imag = imag[k1] + real[k2] * factor_imag + imag[k2] * factor_real; real[k2] = real[k1] - (real[k2] * factor_real - imag[k2] * factor_imag); imag[k2] = imag[k1] - (real[k2] * factor_imag + imag[k2] * factor_real); real[k1] = temp_real; imag[k1] = temp_imag;*/ //上面方法雖然直白,但效率太低,稍微改變結構如下: temp_real = real[k2] * factor_real - imag[k2] * factor_imag; temp_imag = real[k2] * factor_imag + imag[k2] * factor_real; real[k2] = real[k1] - temp_real; imag[k2] = imag[k1] - temp_imag; real[k1] = real[k1] + temp_real; imag[k1] = imag[k1] + temp_imag; } factor_real = inv*cos(-2 * PI*(j + 1)*factor_step / N); factor_imag = inv*sin(-2 * PI*(j + 1)*factor_step / N); } } if (inv == -1) { for (i = 0; i <= N - 1; i++) { real[i] = real[i] / N; imag[i] = imag[i] / N; } } for (i = 0; i<N;i++) { dSp[i] = sqrt(real[i] * real[i] + imag[i] * imag[i]); } }
一般好像需要進行下轉換,即后半部分和前半部分置換,即1234變成3412.
void FFT::FFTShift(double dp[], int len) { for (int i = 0; i < len / 2; i++) { double tmp = dp[i]; dp[i] = dp[i + len / 2]; dp[i + len / 2] = tmp; } }
此時得到的應該是實部和虛部解出來的頻譜圖的Y軸電壓值,一般頻譜圖Y軸為dB,因此需要進行轉換
void FFT::getFFT(double dRe[], double dIm[], double dSp[], int len, int nBits, double dWorkingImpedance) { dealFFT(dRe, dIm, dSp, len, nBits, 1); FFTShift(dSp,len); //此時得到的應該是實部和虛部解出來的頻譜圖的Y軸電壓值,還需要轉換 ////dBW = 10lg(電壓^2/阻抗);dBm =dBW+30,注意電壓單位是V for (int i = 0; i<len; i++) { dSp[i] = 10 * log10(dSp[i] * dSp[i] / dWorkingImpedance)+30; } }
getFFT()輸出之后的dp才是要的頻譜圖Y軸值,頻譜圖X軸的坐標得到通過以下方式:
//X軸精確度,采樣頻率/數據個數 = 步長
m_DeltaX_S = m_dataPara.nSampleFrequency / nDataNumOfPage_S;
data_SX[i / 2] = m_dataPara.nCenterFrequency + count*m_DeltaX_S - m_dataPara.nWorkingBandWidth/2;//中心頻率+當前點*步長-帶寬/2
在項目中,實際代碼如下:
int count = 0; for (int i = 0; i < nDataNumOfPage_S * 2; i++) { if (i % 2 == 0) data_SQ[i / 2] = data_S[i] * m_DeltaY_S; else data_SI[i / 2] = data_S[i] * m_DeltaY_S; if (i % 2 == 0) { count++; data_SX[i / 2] = m_dataPara.nCenterFrequency + count*m_DeltaX_S - m_dataPara.nWorkingBandWidth/2; } } m_dataPara.nWorkingImpedance = 50; FFT fft; int nBits = log10(nDataNumOfPage_S) / log10(2);//因為參數需要是2的N次方
fft.getFFT(data_SQ, data_SI, data_SS, nDataNumOfPage_S, nBits, m_dataPara.nWorkingImpedance); LoadData_S(data_SX, data_SS, nDataNumOfPage_S);
。。。
其他參考文章:
http://blog.sina.com.cn/s/blog_65d639d50101buo1.html
http://blog.csdn.net/hippig/article/details/8778753
http://www.makaidong.com/%E5%8D%9A%E5%AE%A2%E5%9B%AD%E6%8E%92%E8%A1%8C%E6%A6%9C/20151025/365773.html
