一、物體分類:
這里使用的是caffe官網中自帶的例子,我這里主要是對代碼的解釋~
首先導入一些必要的庫:
import caffe
import numpy as np import matplotlib.pyplot as plt %matplotlib inline plt.rcParams['figure.figsize'] = (10 , 10) #顯示圖像的最大范圍,使用plt.rcParams['savefig.dpi']得到缺省的dpi值為100,則最大的圖片范圍為1000*1000
plt.rcParams['image.interpolation'] = 'nearest' #最近鄰差值方式
plt.rcParams['image.cmap'] = 'gray' #灰度空間,表明顯示圖像時是灰度圖而不是彩色圖 import sys caffe_root = 'E:\\caffe\\caffe-master\\' sys.path.insert(0 , caffe_root + 'python')
import os
caffe.set_mode_cpu() #CPU模式
model_def = caffe_root + 'models/bvlc_reference_caffenet/deploy.prototxt' #加載配置文件 model_weights = caffe_root + 'models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel' #加載模型文件 net = caffe.Net(model_def , model_weights , caffe.TEST) #用caffe的測試模式,即只是提取特征,不訓練
#預處理函數
#caffe中用的圖像是BGR空間,但是matplotlib用的是RGB空間;再比如caffe的數值空間是[0,255],但是matplotlib的空間是[0,1],這些都需要轉換
#載入imagenet的均值,實際圖像要減去這個均值,從而減少噪聲影響(同時還有特征縮放的作用?)
mu = np.load(caffe_root + 'python/caffe/imagenet/ilsvrc_2012_mean.npy')
mu = mu.mean(1).mean(1) #計算像素的平均值(mean(1)按每行計算均值)
print 'mean-subtracted values:' , zip('BGR' , mu) #打印B、G、R的平均像素值
transformer = caffe.io.Transformer({'data' : net.blobs['data'].data.shape}) #用轉換函數Transformer函數使transformer得到data層的數據格式
transformer.set_transpose('data' , (2 , 0 , 1)) #由於python中讀取的圖片格式為H*W*K,所以需要轉換為caffe的格式即K*H*W
transformer.set_mean('data' , mu) #每個通道都減去平均像素值
transformer.set_raw_scale('data' , 255) #python 中將圖片存儲為[0,1],而caffe中將圖片存儲為[0,255],而這里是Python空間,所以將[0,1]轉換為[0,255]
transformer.set_channel_swap('data' , (2 , 1 , 0)) #交換RGB空間到BGR空間
net.blobs['data'].reshape(50 , 3 , 227 , 227) #batchsize=50,3通道,圖像大小為227*227
image = caffe.io.load_image(caffe_root + 'examples/images/cat.jpg')
transformed_image = transformer.preprocess('data' , image) #執行上面的圖像預處理操作,並將image載入到blob中,和下面語句一起的
plt.imshow(image) #顯示圖片
net.blobs['data'].data[...] = transformed_image
output = net.forward() #進行一次前向傳播
output_prob = output['prob'][0] #output_prob存儲屬於每類的概率,['prob'][0],它是一個一維數組
'''
layer {
name: "prob"
type: "Softmax"
bottom: "fc8"
top: "prob"
}
'''
print 'predicted class is:' , output_prob.argmax() #最大概率所在的類別
out:predicted class is: 281
labels_file = caffe_root + 'data/ilsvrc12/synset_words.txt' labels = np.loadtxt(labels_file , str , delimiter = '\t') #一行一行讀取到labels中,定界符delimiter是\t print 'output label:' , labels[output_prob.argmax()]
out:
output label: n02123045 tabby, tabby cat
#輸出概率較大的前5個物體 top_inds = output_prob.argsort()[: : -1][: 5] #得到數組值從小到大的索引值后再從右向左進行提取,並取前5個即概率最大的5個物體 print 'probabilities and labels:' zip(output_prob[top_inds] , labels[top_inds])
out:
Out[17]:
二、人臉檢測
代碼來自一個教程中給的視頻,貼出代碼和附注~
import caffe
%matplotlib inline import numpy as np import matplotlib.pyplot as plt import matplotlib.cbook as cbook #import Image import sys import os from math import pow from PIL import Image, ImageDraw, ImageFont import cv2 import math import random caffe_root = 'E:\\caffe\\caffe-master\\' sys.path.insert(0, caffe_root + 'python') os.environ['GLOG_minloglevel'] = '2' caffe.set_mode_cpu()
#非極大值抑制算法NMS
class Point(object):
def __init__(self, x, y):
self.x = x
self.y = y
def calculateDistance(x1,y1,x2,y2): #計算人臉框的對角線距離
dist = math.sqrt((x2 - x1)**2 + (y2 - y1)**2)
return dist
def range_overlap(a_min, a_max, b_min, b_max):
return (a_min <= b_max) and (b_min <= a_max)
def rect_overlaps(r1,r2):
return range_overlap(r1.left, r1.right, r2.left, r2.right) and range_overlap(r1.bottom, r1.top, r2.bottom, r2.top)
def rect_merge(r1,r2, mergeThresh):
if rect_overlaps(r1,r2):
# dist = calculateDistance((r1.left + r1.right)/2, (r1.top + r1.bottom)/2, (r2.left + r2.right)/2, (r2.top + r2.bottom)/2)
SI= abs(min(r1.right, r2.right) - max(r1.left, r2.left)) * abs(max(r1.bottom, r2.bottom) - min(r1.top, r2.top))
SA = abs(r1.right - r1.left)*abs(r1.bottom - r1.top)
SB = abs(r2.right - r2.left)*abs(r2.bottom - r2.top)
S=SA+SB-SI
ratio = float(SI) / float(S)
if ratio > mergeThresh :
return 1
return 0
class Rect(object):
def __init__(self, p1, p2): #p1和p2為對角線上的兩個點
'''Store the top, bottom, left and right values for points
p1 and p2 are the (corners) in either order
'''
self.left = min(p1.x, p2.x) #?????
self.right = max(p1.x, p2.x)
self.bottom = min(p1.y, p2.y)
self.top = max(p1.y, p2.y)
def __str__(self):
return "Rect[%d, %d, %d, %d]" % ( self.left, self.top, self.right, self.bottom )
def nms_average(boxes, groupThresh=2, overlapThresh=0.2):
rects = []
temp_boxes = []
weightslist = []
new_rects = []
for i in range(len(boxes)):
if boxes[i][4] > 0.2:
rects.append([boxes[i,0], boxes[i,1], boxes[i,2]-boxes[i,0], boxes[i,3]-boxes[i,1]])
rects, weights = cv2.groupRectangles(rects, groupThresh, overlapThresh) #函數解釋http://blog.csdn.net/nongfu_spring/article/details/38977833
rectangles = []
for i in range(len(rects)):
testRect = Rect( Point(rects[i,0], rects[i,1]), Point(rects[i,0]+rects[i,2], rects[i,1]+rects[i,3]))
rectangles.append(testRect)
clusters = []
for rect in rectangles:
matched = 0
for cluster in clusters:
if (rect_merge( rect, cluster , 0.2) ):
matched=1
cluster.left = (cluster.left + rect.left )/2
cluster.right = ( cluster.right+ rect.right )/2
cluster.top = ( cluster.top+ rect.top )/2
cluster.bottom = ( cluster.bottom+ rect.bottom )/2
if ( not matched ):
clusters.append( rect )
result_boxes = []
for i in range(len(clusters)):
result_boxes.append([clusters[i].left, clusters[i].bottom, clusters[i].right, clusters[i].top, 1])
return result_boxes
def generateBoundingBox(featureMap, scale): #由於做了scale變換,所以在這里還要將坐標反變換回去
boundingBox = [] #存儲候選框,以及屬於人臉的概率
stride = 32 #感受野的大小,filter大小,這個需要自己不斷地去調整;
cellSize = 227 #人臉框的大小,它這里是認為特征圖上的一塊區域的prob大於95%,就以那個點在原始圖像中相應的位置作為人臉框的左上角點,然后框出候選框,但這么做感覺會使候選框變多
#遍歷最終的特征圖,尋找屬於人臉的概率大於95%的那些區域,加上Box
for (x,y), prob in np.ndenumerate(featureMap):
if(prob >= 0.95):
boundingBox.append([float(stride * y)/ scale,
float(x * stride)/scale,
float(stride * y + cellSize - 1)/scale,
float(stride * x + cellSize - 1)/scale, prob])
return boundingBox
def face_detection(imgFile):
net_full_conv = caffe.Net(os.path.join(caffe_root, 'faceDetect', 'deploy_full_conv.prototxt'),
os.path.join(caffe_root, 'faceDetect', 'alexnet_iter_50000_full_conv.caffemodel'),
caffe.TEST)#全卷積網絡(導入訓練好的模型和deploy配置文件)
randNum = random.randint(1,10000) #設置一個在1到10000之間的隨機數
scales = [] #設置幾個scale,組成圖像金字塔
factor = 0.793700526 #圖像放大或者縮小的一個因子(經驗值)
img = cv2.imread(imgFile) #讀入測試圖像
largest = min(2, 4000/max(img.shape[0:2])) #設定做scale變幻時最大的scale
scale = largest
minD = largest*min(img.shape[0:2]) #設定最小的scale
while minD >= 227: #只要最小的邊做完最大的scale變換后大於227,之前得到的largest就可以作為最大的scale來用,並依此乘上factor,加入到scale列表中
scales.append(scale)
scale *= factor
minD *= factor
total_boxes = [] #存儲所有的候選框
#進行多尺度的人臉檢測
for scale in scales:
scale_img = cv2.resize(img,((int(img.shape[0] * scale), int(img.shape[1] * scale)))) #調整圖像的長和高
cv2.imwrite('E:\\caffe\\caffe-master\\faceDetect\\scale\\scale_img.jpg',scale_img) #保存圖像
#圖像預處理
im = caffe.io.load_image('E:\\caffe\\caffe-master\\faceDetect\\scale\\scale_img.jpg') #得到的特征值是0到1之間的小數
net_full_conv.blobs['data'].reshape(1,3,scale_img.shape[1],scale_img.shape[0]) #blobs['data']指data層,字典用法;同時由於圖像大小發生了變化,data層的輸入接口也要發生相應的變化
transformer = caffe.io.Transformer({'data': net_full_conv.blobs['data'].data.shape}) #設定圖像的shape格式
transformer.set_mean('data', np.load(caffe_root +
'python\\caffe\\imagenet\\ilsvrc_2012_mean.npy').mean(1).mean(1)) #減去均值操作
transformer.set_transpose('data', (2,0,1)) #move image channels to outermost dimension
transformer.set_channel_swap('data', (2,1,0)) #swap channels from RGB to BGR
transformer.set_raw_scale('data', 255.0) #rescale from [0,1] to [0,255]
out = net_full_conv.forward_all(data=np.asarray([transformer.preprocess('data', im)])) #進行一次前向傳播,out包括所有經過每一層后的特征圖,其中元素為[(x,y),prob](特征圖中的每一個小區域都代表一個概率)
boxes = generateBoundingBox(out['prob'][0,1], scale) #輸出兩類的可能性,並經過篩選獲得候選框
if(boxes):
total_boxes.extend(boxes) #將每次scale變換后的圖片得到的候選框存進total_boxes中
boxes_nms = np.array(total_boxes)
true_boxes = nms_average(boxes_nms, 1, 0.2) #利用非極大值算法過濾出人臉概率最大的框
if not true_boxes == []:
(x1, y1, x2, y2) = true_boxes[0][:-1]
print (x1, y1, x2, y2)
cv2.rectangle(img, (int(x1),int(y1)), (int(x2),int(y2)), (0,0,255),thickness = 5)
cv2.imwrite('E:\\caffe\\caffe-master\\faceDetect\\scale\\result.jpg',img)
imgFile = 'E:\\caffe\\caffe-master\\data\\imageset_2\\tangyudi\\tmp9055.jpg' #image_file = cbook.get_sample_data(imgFile) img = plt.imread(imgFile) plt.imshow(img) plt.show() #face_detection(imgFile)
face_detection(imgFile)
out:
(581, 147, 818, 384)
imgFile = 'E:\\caffe\\caffe-master\\faceDetect\\scale\\result.jpg' img = plt.imread(imgFile) plt.imshow(img) plt.show()
