這幾天看了看PCA及其人臉識別的流程,並在網絡上搜相應的python代碼,有,但代碼質量不好,於是自己就重新寫了下,對於att_faces數據集的識別率能達到92.5%~98.0%(40種類型,每種隨機選5張訓練,5張識別),全部代碼如下,不到50行哦。
# -*- coding: utf-8 -*- import numpy as np import os, glob, random, cv2 def pca(data,k): data = np.float32(np.mat(data)) rows,cols = data.shape #取大小 data_mean = np.mean(data,0) #求均值 Z = data - np.tile(data_mean,(rows,1)) D,V = np.linalg.eig(Z*Z.T ) #特征值與特征向量 V1 = V[:, :k] #取前k個特征向量 V1 = Z.T*V1 for i in xrange(k): #特征向量歸一化 V1[:,i] /= np.linalg.norm(V1[:,i]) return np.array(Z*V1),data_mean,V1 def loadImageSet(folder=u'E:/迅雷下載/faceProcess/att_faces', sampleCount=5): #加載圖像集,隨機選擇sampleCount張圖片用於訓練 trainData = []; testData = []; yTrain=[]; yTest = []; for k in range(40): folder2 = os.path.join(folder, 's%d' % (k+1)) data = [cv2.imread(d.encode('gbk'),0) for d in glob.glob(os.path.join(folder2, '*.pgm'))] sample = random.sample(range(10), sampleCount) trainData.extend([data[i].ravel() for i in range(10) if i in sample]) testData.extend([data[i].ravel() for i in range(10) if i not in sample]) yTest.extend([k]* (10-sampleCount)) yTrain.extend([k]* sampleCount) return np.array(trainData), np.array(yTrain), np.array(testData), np.array(yTest) def main(): xTrain_, yTrain, xTest_, yTest = loadImageSet() num_train, num_test = xTrain_.shape[0], xTest_.shape[0] xTrain,data_mean,V = pca(xTrain_, 50) xTest = np.array((xTest_-np.tile(data_mean,(num_test,1))) * V) #得到測試臉在特征向量下的數據 yPredict =[yTrain[np.sum((xTrain-np.tile(d,(num_train,1)))**2, 1).argmin()] for d in xTest] print u'歐式距離法識別率: %.2f%%'% ((yPredict == yTest).mean()*100) svm = cv2.SVM() #支持向量機方法 svm.train(np.float32(xTrain), np.float32(yTrain), params = {'kernel_type':cv2.SVM_LINEAR}) yPredict = [svm.predict(d) for d in np.float32(xTest)] #yPredict = svm.predict_all(xTest.astype(np.float64)) print u'支持向量機識別率: %.2f%%' % ((yPredict == yTest).mean()*100) if __name__ =='__main__': main()