Mat_<double> temp1(10, 3); Mat_<double> mean1, cov1; temp1(0, 0) = 49; temp1(0, 1) = 7; temp1(0, 2) = 29; temp1(1, 0) = 8; temp1(1, 1) = 19; temp1(1, 2) = 16; temp1(2, 0) = 12; temp1(2, 1) = 8; temp1(2, 2) = 14; temp1(3, 0) = 19; temp1(3, 1) = 37; temp1(3, 2) = 22; temp1(4, 0) = 3; temp1(4, 1) = 43; temp1(4, 2) = 21; temp1(5, 0) = 34; temp1(5, 1) = 17; temp1(5, 2) = 17; temp1(6, 0) = 20; temp1(6, 1) = 34; temp1(6, 2) = 27; temp1(7, 0) = 49; temp1(7, 1) = 14; temp1(7, 2) = 37; temp1(8, 0) = 20; temp1(8, 1) = 26; temp1(8, 2) = 21; temp1(9, 0) = 31; temp1(9, 1) = 41; temp1(9, 2) = 21; calcCovarMatrix(temp1, cov1, mean1, CV_COVAR_NORMAL | CV_COVAR_ROWS); cout << mean1 << endl; cout << cov1/9 << endl;
這樣算出來的結果和matlab是一樣的,

如果最后不除以9(樣本數減1),則得不到正確的協方差矩陣。另外flag中如果加上CV_COVAR_SCALE,則相當於除以10(樣本數)。
