OpenCV中SVD分解函數compute
C++: static void SVD::compute(InputArray src, OutputArray w, OutputArray u, OutputArray vt, int flags=0 ) src – Decomposed matrix w – Computed singular values u – Computed left singular vectors v – Computed right singular vectors vt – Transposed matrix of right singular values flags – Opertion flags - see SVD::SVD().
使用示例
#include <opencv.hpp>
using namespace cv;
//參數分別為輸入圖像,輸出圖像,壓縮比例
void SVDRESTRUCT(const cv::Mat &inputImg, cv::Mat &outputImg, double theratio)
{
cv::Mat tempt;
cv::Mat U, W, V;
inputImg.convertTo(tempt, CV_32FC1);
cv::SVD::compute(tempt, W, U, V);
cv::Mat w = Mat::zeros(Size(W.rows, W.rows), CV_32FC1);
int len = theratio*W.rows;
for (int i = 0; i < len; ++i)
w.ptr<float>(i)[i] = W.ptr<float>(i)[0];
cv::Mat result = U*w*V;
result.convertTo(outputImg, CV_8UC1);
}
int _tmain(int argc, _TCHAR* argv[])
{
cv::Mat scrX = imread("1.png",0);
cv::Mat result;
SVDRESTRUCT(scrX, result,0.1);
cv::imshow("1",result);
waitKey(0);
}
SVD本身是個
O(N^3)的算法,大數據處理比較慢。
原圖如下:

原圖重構如下:

10%壓縮如下:

1%壓縮如下:

